_1. We can answer the questions posed in this problem if we find the intensity point-spread func-
tion. From Eqs. (6-4) and (6-5), we know that the intensity pecint-spread function of an
incoherent system is the squared magnitude of the (properly scaled) Fourier transform of the
exit pupil illumination. The amiplitude transmittance of the exit pupil in this case can be
written

ta(z,y) = circ (%r) ® [6(z ~ s/2,y) + 6(z + s/2, )]

where r = /2 + y?. The Fourier transform of this expression is

2
Fitatzt = (5) 2250 x 2costrst),

where p = 4/ sz + fyz . Taking the squared magnitude of this expression, using the identity
cos?@ = 1(1 + cos28), and introducing the scaling parameters appropriate for the optical
Fourier transform, we obtain the following expression for the intensity point-spread function
(under the assumption that the intensity of the wave at the exit pupil is unity):

2
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IHu,v) = |h(u, v} = 622 2 NN 1+ cos v .
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We can now answer the specific questions of the problem:

{a} The spatial frequency of the fringe is clearly given by

5
AZ,’ )

fo

Note that the fringe frequency increases as the separation between the two apertures
increases.

(b) The envelope of the fringe pattern is seen to be an Airy pattern of the form

z;

wdgug +UE !
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E(u’v) _ 2J1 (wdg).u!}ug) 2

where the scaling factor preceding the Airy pattern has been neglected.



6-2. The physical quantities to follow are amplitudes in the case of a coherent system and intensities
in the case of an incoherent system. p{z,y) represents the (amplitude or intensity) point-spread
function.

6-3.

{a) A line excitation lying along the r axis would be represented by

(b)

{e)

ofz,y) = &(y).

The response to such an excitation would be

iz, y) = plz,y)®@olz.y) =p(z.y) ®&y)

/fp(ﬁ,n (y—n)dédn = f p{§,y) dE = U(y)

Consider a one-dimensional Fourier transform of the line-spread function:

FLw) ] j pl€,y) expl—j2m fo] dédy

1

] f P&, ) exp (~327((£x + Sy )] ddy |pem0 = PO.).

fy=r

The unit step function will be represented by

0 <0
S(ar,y)={ 1 §>1

Therefore the response of the system will be

i

i2(z,y) = plz,y) ® 8(z,y) = f f p€,m) dédn = f Hn)dn

—00
Thus
step response = f (m)dn.

The the fx-axis and fy-axis sections of the OTF of a clear square pupil are a.lready
known to be identical triangle functions, dropping linearly to zero at frequency 2f, = ’,:
from value unity at the origin. Such a curve is included in part {a) of the figure. More
interesting is the case with a central obscuration. We can calculate either the fx section
or the fy section, since they are identical. Note that the total area of the obscured pupil
is 4w? — w? = 3w?, which must be used as a normalizing factor for the autocorrelation
function. In calculating the autocorrelation function of the pupil, we shift one version of
the pupil in the x direction with respect to the other version. As the shift takes place,
the area of overlap drops from 3w? with no shift, linearly to 3w?/2 at a shift of f5/2.
With further shift, the curve changes slope, dropping linearly to value w? at shift f,.
Continuing shift results in no change of overlap until the shift is 3f,/2, following which
the curve falls linearly to zero at 2f,. Part (a) of the figure shows the properly normalized
OTF that results.




{b) Suppose that the width of the stop is 2w — 2¢. The total clear area of the pupil become
4152 — (2w —2€)? = Bwe—4e? = Bwe. As the two pupils are shifted, the overlap area quickly
drops to 2(2w — €)e ~ 4we after a shift of «. The overlap then continues to drop linearly,
but with a shallower slope, reaching value 4¢? for a shift of 2w — 2¢. Continued shifting
results in a rapid linear rise in the overlap to a value of 2we when the displacement
is 2w — ¢, following which it falls linearly to zero at displacement 2w. After proper
normalization, the resulting OTF is as shown in part {b} of the figure.
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Figure 6-3: .



6-7. To find the OTF of this system under various assumptions, we first find the intensity point-
spread functions under those conditions. If the object is a point source, then under the
assumption that z, is very large, we can assume that the pinhole is illuminated by a normally-
incident plane wave.

{a) Under the assumption that geometrical optics can be used when the pinhole is large, the
point-spread function is in this case simply a projection of the pupil function onto the
image plane. Since the incident wave has been approximated as plane, the diameter of
the circular spread function is the same as the diameter of the circular pupil. Thus the
point-spread function is given by

s(;z,v) = Acire (%)

where A is an arbitrary constant, and r = vuZ +v%. The corresponding OTF is the
normalized Fourier transform of s(u,v), so

J1 (2rwp)

Hp) =2— »
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(b)
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Figure 6-6: .

where p = 1/ f_,(g + fZ. The first zero of this OTF occurs at
0.61

par = =
Note that the cutoff frequency decreases as the pinhole size increases.

Now the pinhole is assumed to be so small that Fraunhofer diffraction occurs between the
aperture and the image plane. The point-spread function of the system will now be the
scaled optical Fourier trausform of the circular aperture distribution, namely

J(2rwr) Az ] 2

s(u,v) =1, [2 TS

A scaled and normalized Fourier transform of this function yields the OTF

which vanishes at

Note that this cutoff frequency increases as the diameter of the pinhole increases.

If we start with a large pinhole, geometrical optics will hold, and the cutoff frequency will
increase as we make the pinhole smaller. However, eventually the pinhole size will be so
small that geometrical optics does not hold, and eventually the Fraunhofer approximation
will be valid. In this case the cutoff frequency will decrease as we make the pinhole
smaller. A good approximation to the optimum choice of pinhole diameter can be found
by equating the two expressions for cutoff frequency,

0.61/w = 2w/ Az,
yielding a solution for the radius w given by

woptimum =V 0305‘\} ;\2{.

This solution has chosen the smallest pinhole size possible before diffraction spreads the
point-spread function appreciably.



~ 6-17. The intensities in the two cases are as follows:

I |A+al? = A? 4+ 2Aa+a®  coherent

I = A%+4? incoherent.

It follows that in the two cases

AT 24a + a® coherent
=L o s o
|A|2 A2

Al a? .

W = incoherent.

Since A > a, it is clear that the perturbation of the desired intensity is much greater in the
case of coherent noise than in the case of incoherent noise.



