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Chapter 10
Spatial Coherence—Part 2

Geometry of the fringe pattern:

Prof. J. Bokor

< Zy
pinhole viewing
plane plane
2 2 2
ry = J22+(X1—X) +(hy-y) (10.1)
2 2 2
r, = JZ2+ (X, —X)2+ (h,—y) (10.2)
Define:
r,° ,/xf+hf r,° ,/x§+h§ (10.3)

astheradial distances of the pinholes from the optic axis. The pinhole spacings are given by:

We define the pinhole spacing vector as:

and Q° (x,y) istheobservation pointinx,y plane

Under the paraxial approximation z, » |Q| rr,

r2—r1@2iz[r§—ri—2Dxx—2Dhy]
2

1.2 2 =
= —[r5—r;—2DPx
222[r 2—r1 Ql

Assuming that a ,, is constant, the fringe modulation has the form
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(10.7)

This has the form of a plane wave with awavevector in the x-y plane: I;R[ﬁ
%

N | z
Defining d = |DP| , as the pinhole spacing, then the fringe period is TZ The fringes are

straight, and run perpendicular to DP.
S y
line joining

P1—P, ~ fringes

5% /// 1@ =19 +1”@Q
+2 l(l)(Q)l(z)(Q)glzgézc S

2 N
ro—r 0
cosaQQ 2 1 DPxQ ©
e i 2z, Z g

Let’slook at acut through the fringe pattern along the X' axis. Assume that I(l)(Q) , I(z)(Q) are

nearly constant (tiny pinholes) and r § - ri = 0 (where the pinholes are equidistant from the
axis).

[z, 1(X)
2,

4@

c
half-width of fringe packet, (smilar to Michelson) = [%d

The total number of fringes observable is roughly:
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(10.8)

Each fringe represents a path difference of [ ]

c no_ 1 T
nDnN Dn  [fractiona bandwidth]

The coherence length is ct @[%] =

Quasimonochromatic condition

We wish to concentrate on the spatial coherence effects and make the temporal coherence effects
negligible. Assume that the light is narrowband. Not just Dn «n, but for al source points and
observation points, the path lengths are the same within t ..

Thus, for al source pointsand all Q. Also

(ro=rqy)ec, (r'y—r1y)ac«t, (10.9

If these conditions are satisfied, the fringe contrast is constant over the observing region. The
coherence function simplifies

(10.10)
(10.12)
The mutual intensity is:
J1° GL(0) = au(Py, t)u* (P, )i (10.12)
M, ° gp(0) = iz Of|up,|£1 (10.13)

102
[1(P)I(P)]
Under these conditions, the intensity in the x-y plane becomes
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xy) = 10 +1@ 4 2k1k2lecos[|—ZZE DP xQ) +f 12} (10.14)
2

=10 4+1@ 42 I(l)l(z)mizcongZEZDPXQ +f 12]

(10.15)
(10.16)
(10.17)
The fringe visibility is given by:
v =229 10.18
- |(1)+|(2)rnl.2 ( . )

andV = mp, if IV = 1%,

n, = 0 tellsusthere are no fringes. The two waves are mutually incoherent.

nmy, = 1 tellsusthat the waves are perfectly correlated, and are mutually coherent.

For 0 <n,, <1 the waves are partially coherent.

The above cases refer to two particular pinhole points P;, P,. Thisisalimiting case of illumina-

tion over the full object plane. Then we are concerned with all the pairs of P;, P,, over the full
object plane.

V arious measures of coherence

Symbol Definition Name Tergp?:t?jl or
Cp(t) &Py, t—t)u* (P, t)i Self coherence function Temporal
Oy (1) Gy, (t) £G4 (0) Complex degree of self-coher-  Temporal
ence
Cpp(t)  &u(Py, t—t)u* (P, t)F Mutual coherence function Spatial and
Tempora
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I Temporal or
Symbol Definition Name Spatial
Gr2(t) Cpo(t) Complex degree of coherence  Spatial and
f N () T
5,,(0)G,,(0) emporal
I G,,(0) Mutual intensity Spatial
guasimono-
chromatic
My, 01,(0) Complex coherence factor Spatial
guasimono-
chromatic

Propagation of Mutual coherence

As light propagates from
P, S, to S,, the mutual

coherence function
Q, changes (propagates).

Q
P, ¥ ro ’ Given G(P,, P,;t) for all

P,, P, pairs, how to find
S S,

Start with narrowband light. Later we will specialize to quasi-monochromatic light.

(10.19)
The generalized Huygens-Fresnel integral relatesthefieldson S, tofieldson S; .
_ a1 M6
u(Qput+t) = (?“_—rlugpl, t+t —Egcosqlds1 (10.20)
* _ o1 r2('j
u(Q,t) = (?JI__rz u gflbz,t—aacosqzds2 (10.21)
1

Then
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aua?’l,t+t——1°u 2,t——gn
G(Qq, Qxt) = Q) ds ) ds, cos(Q, cosq, (10.22)
s1 s, (|) rifs

Thus

r, —I¢C0S0, COST,
= —
C [ r [ r

G(Qp, Quit) = Q) 510 Us,GPy, Poit +
Sl S1

As aside note, using the generalized Huygens-Fresnel integral for broadband light given earlier,
we obtain the propagation law for mutual coherence of broadband light:

(10.23)

—I'155€0SQ; COSQ,

G(Q1 Qzt) = =0 ds100) ds, 1 68@1, Pyt + 2C T (10.24)
S, s, 1it? pcry2per;

Now make a quasimonochromatic approximation; that is, the (maximum difference in path-
lengths) << (the coherence of the length of light).

AtS,,
(10.25)
The integrand in equation (1) witht =0,
(10.26)
G, P, 210 = 3P, P,) exp[—]—p(r —rl)] (10.27)
This leads usto the propagation law for mutual intensity
: C0sq, Cosq
‘](Ql’ Q,) = dsloo dszJ(Pl, z)eXp[—JzJ_g(rz— )] " (10.28)
Sl S, | | I’l | r2

In general, the intensity distribution can be found by letting Q,, Q, mergein the mutual intensity.

(10.29)

Limiting forms of the coherence function

Fully coherent field in the quasi-monochromatic limit

n,, = 1 foral pairs (P, P,).
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This means

|[J12]
[I(P)I(PYI"®

|au (P, t)U* (P,, t)

-1 (10.30)

” T 1 (10.31)
[4U(P4, )| RaU (P, t)| 1]
Apply the Schwarz inequality
2 2 1152
[cf(Dg* O] £ [l dtclg(t) "] (10.32)

Thereisequality if and only if g(t) = kf(t) with kacomplex constant.
Thus U(P, t) = K;,U(P,t) Ky, dependson P,, P, but not t.

Choose some reference point P . We can then write

U(P,, 1) U(P,, 1)
U(P, t) = U(Pl)—m; U(P,t) = U(PZ)—ln2 (10.33)
[1(Py)] [1(Py)]
Thus
(10.34)
correspondingly
My, = exp{j[f (Py) - f(P]} (10.35)
where
f(Py) = ag[U(Py)] f(P,) = ag[U(P,)] (10.36)

The incoherent limit:

For two pinholes n;, = 0 represents incoherent waves. A fully coherent field has n;, = 1 for
al pairs (P4, P,). A logical extension might be to say that for an incoherent field:

|Cpp(t)| = O foral Pyt P, andforallt

However, if we examine the consequence of thisin equation (1), thefirst integrationover S; = 0

except at P, = P, wherethe valueisfinite (with afinite singularity = I(P,)). Hence, the result
of integration is precisely zero.

Thus G(Q4, Q,;t) = 0 for anincoherent field at Sy, but I1(Q;) = (Q4, Q,;0) = 0 aso.
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An incoherent wave field on S; does not propagate!

Why isthis? Anincoherent field in this sense has an infinitessmally fine spatial structure. Recall
our discussion of the spatial frequency cutoff. The spatial frequencies fX’y > I% don’'t propagate.

A perfectly incoherent surface doesnot radiate.

For a propagating wavefield, coherence must exist over alinear dimension of at least [ . For the
guasimonochromatic case, the mutual intensity representing a propagating incoherent wave field
can be represented by:

(10.37)

J(P, Py) = «/I(Pl)I(P2)|:

where J; isthe Bessel function.

J,(ky/DX* + Dy )]

k +Dy

Thisis somewhat cumbersome for calculations. If an optical system has aresolution coarser than
[ a (x y) plane, the exact shape of J(P;, P,) isnot important. Thiswill become clearer aswe
go along.

Under this assumption, it is reasonable to approximate

(10.38)

(10.39)

If coherence extends over more than [, but is still not resolved, then the d-function is still valid,
but the value of k changes.

For awavefield that isincoherent in this sense, the mutual intensity propagates as follows:

cosq, cosq,

JQ1 Q) = Ao (Po Pz)eXp[J—E(r —rl)} ds,ds, (10.40)
S S ry Ty
Using equation (10.38):
C0S(; COS
= L o (Pl)eXp[ —(rz )} PH % s, (10.41)
N*'s ry Iy
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The geometry:
X
observation
region
Under the conditions of the Fresnel approximation:
(10.42)
(10.43)
2 2
Xo=X)"+(y,—h
r, @z+( 2=%) * (=) (10.44)
2z
2 2
X —X) +(y;—h
r, = z+( 1=%) + (¥ —h) (10.45)
2z
Then
f—r = Ziz[x§+y§—(xi+y§) +2Dxx + 2Dyh] (10.46)
(the pure x2, h? terms cancel). Let:
(210.47)
ke 2
J(Dx, Dy) = €= 331 (% h)exp[jl:Q(Dxx + Dyh)}dxdh (10.48)
(I'2) z
I (X, h) isdefined so that it is zero outsideS.
(10.49)

Van Cittert - Zernike theorem

The normalized form of the propagation law gives the complex coherence factor:
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&' 5ol (x. h) exp[j%P(Dxx+ Dyh)]dxdh
~ 4
m(Dx, Dy) = = 7
OO (x, hydxdn
_y

Interpretation

Aside from the phase factor e’ ,

Prof. J. Bokor

(10.50)

- J(Dx, Dy) isfound from atwo-dimensional Fourier Transform of intensity 1(x, h)

across the source.

- The mutual intensity is analogous to Fraunhofer diffraction pattern of source aperture.

- Butitis validinthe Fresnd region.

- Modulus of the coherence factor || depends only on coordinate differences. Width of

In| defines a coherence area A.. We define this by analogy to't .

(10.51)

- The coherence area grows with the distance z from the source like divergence of a dif-

fraction pattern.

where A isthe source area

Example

(10.52)

A circular source, with radiusa , which isuniformly bright, quasimonochromatic, and incoherent.

®/x2 + K20

I(x,h) = I circe f—HN2
ocircg

e a g

Then the mutual intensity has the form of an Airy pattern

pa’l k Jlg%P—a o + Dyzg
—jY Z
XY Xp ¥,) = —=¢€’
= 2
(N'2) ﬁ_LaA/DXZ + Dy’
z
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~ —jY
M(Xy, Y%, Y,) = €2 (10.55)

Recal that y = I%[(x§+y§)_(xf+y§)]

Note: thisisacoherencefactor, not afield or intensity. It relatesto coherence at 2 points. It can
then be used to predict the result of the interference experiment.

Py
incoherent §
source T
P,
pinhole b
plane o
—Vviewing plane

The Van Cittert - Zernike theorem gives the coherence between P,, P, asafunction of the dis-
tance between P, P, . Inturnwe can then predict the fringe visibility at the viewing plane. Also,

a careful measurement of the fringe phase and visibility gives m(xy, y;;X,, y,) at the pinhole
plane. Young's experiment can be used to measure the coherence.

For an incoherent source, what is the intensity of the pattern at the pinhole plane?

(10.56)

|deally the incoherent source has afine spatial structure of ~[ . This diffracts out to all angles.
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