Chapter 11

Generalized Van Cittert - Zernike theorem for partial coherence

We now extend the analysis to partially coherent sources. We assume:

- There is a small but nonzero coherence area on the source.
- The coherence factor of the source depends only on the coordinate differences.
- The source size and spatial structure in the source is large compared to the coherence area.

Under these assumptions, the source mutual intensity is:

where $\bar{\xi}=\frac{\xi_{1}+\xi_{2}}{2} \quad \bar{\eta}=\frac{\eta_{1}+\eta_{2}}{2}$
We now use the general propagation law for mutual intensity, with paraxial conditions

previously, $\left(\xi_{1}, \eta_{1}\right)\left(\xi_{2}, \eta_{2}\right)$ points merged due to an idealized incoherent δ-function approximation.

Now, with a little algebra, we can write

$$
\begin{equation*}
r_{2}-r_{1} \cong \frac{1}{z}[\bar{x} \Delta x+\bar{y} \Delta y+\bar{\xi} \Delta \xi+\bar{\eta} \Delta \eta-\Delta x \bar{\xi}-\bar{x} \Delta \xi-\Delta y \bar{\eta}-\bar{y} \Delta \eta] \tag{11.3}
\end{equation*}
$$

A small coherence area means $\tilde{\mu}$ is only appreciable for small $\Delta \xi, \Delta \eta$. We can drop the $\Delta \eta, \Delta \xi$ terms for

$$
z>4 \frac{\xi \Delta \xi}{\bar{x}} \quad z>4 \frac{\bar{\eta} \Delta \eta}{\bar{\lambda}}
$$

We can then write

$$
\begin{align*}
& J\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\frac{e^{-j \psi}}{(\overline{\lambda z})^{2}} \int_{-\infty}^{\infty} \int I(\bar{\xi}, \bar{\eta}) \exp \left[j \frac{2 \pi}{\bar{\lambda} z}(\Delta x \bar{\xi}+\Delta y \bar{\eta})\right] d \bar{\xi} d \bar{\eta} \tag{11.4}\\
& \times \iint_{-\infty}^{\infty} \mu(\Delta \xi, \Delta \eta) \exp \left[j \frac{2 \pi}{\bar{\lambda} z}(\bar{x} \Delta \xi+\bar{y} \Delta \eta)\right] d \Delta \xi d \Delta \eta
\end{align*}
$$

same as before. The second integral depends on \bar{x}, \bar{y}

$$
\begin{equation*}
\kappa(\bar{x}, \bar{y})=\iint_{-\infty}^{\infty} \mu(\Delta \xi, \Delta \eta) \exp \left[j \frac{2 \pi}{\lambda z}(\bar{x} \Delta \xi+\bar{y} \Delta \eta)\right] d \Delta \xi d \Delta \eta \tag{11.6}
\end{equation*}
$$

This is just the Fourier Transform of μ. It gives the coarse variation of the average intensity.

$$
\begin{equation*}
J\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\frac{\kappa(\bar{x}, \bar{y})}{(\bar{\lambda} z)^{2}} e^{-j \psi} \iint_{-\infty}^{\infty} I(\bar{\xi}, \bar{\eta}) \exp \left[j \frac{2 \pi}{\lambda z}(\Delta x \bar{\xi}+\Delta y \bar{\eta})\right] d \bar{\xi} d \bar{\eta} \tag{11.7}
\end{equation*}
$$

This looks just like the incoherent case, except that κ varies in the (x, y) plane.
Since μ is narrow, κ is broad. The integral is narrow in $\Delta x, \Delta y$. When $\Delta x=\Delta y=0$ we recover the diffraction pattern described by κ.

In the far-field:

- The source size in the (ξ, η) plane determines the coherence area.
- The source coherence area in $(\Delta \xi, \Delta \eta)$ determines the intensity distribution.

Here, our small coherence area approximation is valid under the condition: $z>2 \frac{D d_{c}}{\bar{\lambda}}$, where D is the dimension of source and d_{c} is the dimension of the coherence area of the source. This is just the geometric mean of the far field distances for D, d_{c}. (Recall that $z_{\text {far-field }}>\pi \frac{D^{2}}{\bar{\lambda}}$.)

Diffraction revisited for a partially coherent light

What is the diffraction pattern from an aperture when the illumination is partially coherent?

Aperture amplitude transmittance $P(\xi, \eta)$ (later this will be our pupil function).

Effect of an aperture on mutual intensity:

The effect of an aperture on the field is:

$\tau_{o}:$ any possible time delay through diffracting structure
Then

$$
\begin{align*}
J_{t}\left(\xi_{1}, \eta_{1} ; \xi_{2}, \eta_{2}\right) & \equiv\left\langle U_{t}\left(\xi_{1}, \eta_{1} ; t\right) U^{*} t\left(\xi_{2}, \eta_{2} ; t\right)\right\rangle \tag{11.9}\\
& =P\left(\xi_{1}, \eta_{1}\right) P^{*}\left(\xi_{2}, \eta_{2}\right)\left\langle U_{i}\left(\xi_{1}, \eta_{1} ; t-\tau_{o}\right) U^{*}\left(\xi_{2}, \eta_{2} ; t-\tau_{o}\right)\right\rangle \\
J_{t}\left(\xi_{1}, \eta_{1} ; \xi_{2}, \eta_{2}\right) & =P\left(\xi_{1}, \eta_{1}\right) P^{*}\left(\xi_{2}, \eta_{2}\right) J_{i}\left(\xi_{1}, \eta_{1} ; \xi_{2}, \eta_{2}\right) \tag{11.10}
\end{align*}
$$

Under similar approximations to those used to obtain the general Van Cittert - Zernike theorem:

Thus

$$
\begin{align*}
J_{i}\left(\xi_{1}, \eta_{1} ; \xi_{2}, \eta_{2}\right) & =P\left(\xi_{1}, \eta_{1}\right) P^{*}\left(\xi_{2}, \eta_{2}\right) I(\xi, \bar{\eta}) \tilde{\mu}_{i}(\Delta \xi, \Delta \eta) \tag{11.12}\\
= & P\left(\bar{\xi}-\frac{\Delta \xi}{2}, \bar{\eta}-\frac{\Delta \eta}{2}\right) P^{*}\left(\bar{\xi}+\frac{\Delta \xi}{2}, \bar{\eta}+\frac{\Delta \eta}{2}\right) I(\bar{\xi}, \bar{\eta}) \tilde{\mu}_{i}(\Delta \xi, \Delta \eta) \tag{11.13}
\end{align*}
$$

This depends on both $(\xi, \bar{\eta})$ and $(\Delta \xi, \Delta \eta)$ variables. It is not a simple product separation.
Using the general Van Cittert - Zernike in the paraxial approximation:

$$
\begin{array}{r}
J\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)=\frac{e^{-j \psi}}{(\bar{\lambda} z)^{2}} \iint_{-\infty}^{\infty} \iint d \Delta \xi d \Delta \eta d \bar{\xi} d \bar{\eta} P\left(\bar{\xi}-\frac{\Delta \bar{\xi}}{2}, \bar{\eta}-\frac{\Delta \bar{\eta}}{2}\right) P^{*}\left(\bar{\xi}+\frac{\Delta \bar{\xi}}{2}, \bar{\eta}+\frac{\Delta \bar{\eta}}{2}\right) \\
\times I(\bar{\xi}, \bar{\eta}) \mu(\Delta \xi, \Delta \eta) \exp \left[j \frac{2 \pi}{\bar{\lambda} z}(\Delta x \bar{\xi}+\Delta y \bar{\eta}+\bar{x} \Delta \xi+\bar{y} \Delta \eta)\right] \tag{11.14}
\end{array}
$$

To get the intensity of the diffraction pattern, we set $x_{1}=x_{2}, y_{1}=y_{2}$.

$$
\begin{gather*}
\Delta x \rightarrow 0 \quad \Delta y \rightarrow 0 \quad \psi \rightarrow 0 \\
I(x, y)=\frac{1}{(\overline{\lambda z})^{2}} \int_{-\infty}^{\infty} \int \mathrm{P}(\Delta \xi, \Delta \eta) \tilde{\mu}_{i}(\Delta \xi, \Delta \eta) \exp \left[j \frac{2 \pi}{\bar{\lambda} z}(x \Delta \xi+y \Delta \eta)\right] d \Delta \xi d \Delta \eta \tag{11.16}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathrm{P}(\Delta \xi, \Delta \eta)=\int_{-\infty}^{\infty} \int I(\bar{\xi}, \bar{\eta}) P\left(\bar{\xi}-\frac{\Delta \xi}{2}, \bar{\eta}-\frac{\Delta \eta}{2}\right) P^{*}\left(\bar{\xi}+\frac{\Delta \xi}{2}, \bar{\eta}+\frac{\Delta \eta}{2}\right) d \bar{\xi} d \bar{\eta} \tag{11.17}
\end{equation*}
$$

If $I(\bar{\xi}, \bar{\eta})$ is constant over the aperture, then P is just the autocorrelation function of the complex pupil function.
\square
The intensity distribution is a Fourier Transform of $P(\Delta \xi, \Delta \eta) \mu_{i}(\Delta \xi, \Delta \eta)$. Note the valid range on z is $z>2 \frac{D d_{c}}{\lambda}$, assuming that $d_{c}<D$. However, if $d_{c}>D$ (as with coherent illumination), then

$$
z>2 \frac{D^{2}}{\bar{\lambda}} \quad \text { (same as Fraunhofer) }
$$

Interpretation

Check the coherent limit. We should get the Fraunhofer formula. Full coherence: $\mathfrak{\mu}=1$. Then

checks
Now let's check for nearly incoherent illumination, where the coherence area << aperture area $\left(d_{c}<\Delta\right)$. Then $\mu(\Delta \xi, \Delta \eta)$ is sharply peaked near the origin.

Near $(\Delta \xi, \Delta \eta)=(0,0), P$ has its maximum value of $I_{o} A$.

$$
\begin{equation*}
I(x, y) \cong \frac{I_{o} A}{(\bar{\lambda} z)^{2}} \int_{-\infty}^{\infty} \int \mu_{i}(\Delta \xi, \Delta \eta) \exp \left[j \frac{2 \pi}{\bar{\lambda} z}(\Delta \xi x+\Delta \eta y)\right] d \Delta \xi d \Delta \eta \tag{11.20}
\end{equation*}
$$

The intensity of the diffraction pattern is a Fourier Transform of the mutual coherence function.

- Since $d_{c} \ll$, the light diffracts more rapidly, with a larger diffraction angle than for coherent illumination
- In fact, the divergence is controlled only by d_{c} in this limit. The aperture in this case has a negligible effect!
- Recall the result from the Van Cittert - Zernike theorem. The coherence area of diffracted light in a far-field is related to the Fourier Transform of the aperture.

Now we consider the intermediate case: partially coherent illumination
Both P and $\mathfrak{\mu}$ play a role in determining the shape of $I(x, y) . I(x, y)$ is determined by the convolution of the transforms of P and μ.

$$
\begin{equation*}
I(x, y)=\frac{I_{o}}{(\bar{\lambda} z)^{2}} \mathrm{~F}[\mathrm{P} \cdot \mathfrak{\mu}]=\frac{I_{o}}{(\bar{\lambda} z)^{2}} \mathrm{~F}[\mathrm{P}] \otimes \mathrm{F}[\mathfrak{\mu}] \tag{11.21}
\end{equation*}
$$

Thus, the Fraunhofer diffraction pattern is convolved with $F[\alpha]$.
As the coherence area is reduced, the diffraction pattern gets smoothed and broadened out.

