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Chapter 11
Generalized Van Cittert - Zernike theorem for partial coherence

We now extend the analysis to partially coherent sources. We assume:
- Thereisasmall but nonzero coherence area on the source.
- The coherence factor of the source depends only on the coordinate differences.

- The source size and spatial structure in the source is large compared to the coherence
area.

Under these assumptions, the source mutual intensity is:

(11.1)

X + X, h1+h2
2 2

where x =

We now use the general propagation law for mutual intensity, with paraxial conditions

¥
Iy Y1 Xar ) = a__l__z OO (X h1i%e hz)exp[—j %(rz-rl)}dxldh Ax,dh,  (11.2)
) y

r
(CSTRLEY) \ previously, (Xq, h;) (X5, hy)

(X1, Y1) points merged due to an ide-
alized incoherent d-function

M' (X2, ¥2) approximation.
(X5, hy)

Now, with alittle algebra, we can write

f,—t, @;[)'(DX +yDy +XDx + FiDh — DxX — XDX — Dyfi —yDh] (11.3)

A small coherence areameans it isonly appreciable for small Dx, Dh . We can drop the Dh, Dx
terms for

Spatial_coherence pt3_post.fm - 77 - Chapter 11



University of California, Berkeley Prof. J. Bokor
EE290F

z> 4X_DX z> 4@
X r
We can then write
e—jy ¥
(%, V1o ¥V2) = —— (% ﬁ)exp[ (Dxx+Dyﬁ)}dxdﬁ (11.4)
2%, )

n'(Dx Dh)exp[j (XDx + yDh )}dedDh

(11.5)
same as before. The second integral dependson X, y
¥
k(%) = 9OMDx, Dh)exp [] 2P (xDx + yDh )]de dbh (11.6)
_¥

Thisisjust the Fourier Transform of m It gives the coarse variation of the average intensity.

¥
30X, Vi Vo) = k((IL)V) 3 8%, ﬁ)exp[ (Dxx + Dyﬁ)}dxdﬁ (11.7)
Z

Thislooksjust like the incoherent case, except that k variesinthe (x,y) plane.

Since mis narrow, k isbroad. Theintegral isnarrow in Dx, Dy. When Dx = Dy = 0 we
recover the diffraction pattern described by k .

In the far-field:
- The source sizeinthe (x, h) plane determines the coherence area.

- The source coherence areain (Dx, Dh) determines the intensity distribution.

Dd
Here, our small coherence area approximation is valid under the condition: z > ZTC, where D is

the dimension of source and d, is the dimension of the coherence area of the source. Thisisjust

2
the geometric mean of the far field distancesfor D, d,, . (Recdll that z;, ¢yq > p[I)T )

Diffraction revisited for a partially coherent light

What is the diffraction pattern from an aperture when the illumination is partially coherent?
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h y
X rl' L X
(X, hy) /
(X, 1) /
< z
Usu aISgeom etry P(x, h) nonzeroinside S.

Aperture amplitude transmittance P(x, h) (later thiswill be our pupil function).

Effect of an aperture on mutual intensity:

The effect of an aperture on thefield is:

(11.8)
t .- any possible time delay through diffracting structure
Then
J (X, h ;%5 hy) @ AU (xq, hyst) UT (%, hyit)f (11.9)
= P(xq, h))P*(x, h,)8U;(x, hit—t JU™ (X, ht =t )i
Ji(xg, hyxg, ho) = P(xg, hp)P* (xa h2) Ji(xq, hyiXa, hy) (11.10)
Under similar approximations to those used to obtain the general Van Cittert - Zernike theorem:
(11.11)
Thus
Ji(Xy, hixo, hy) = P(Xy, hl)P*(xz, h,)1(x, A)Mm(Dx, Dh) (11.12)
= Pgi ﬁ—— §+— ﬁ+— 91(x, A)M(Dx,Dh)  (11.13)

This depends on both (x, i) and (Dx, Dh) variables. It is not a simple product separation.

Using the general Van Cittert - Zernike in the paraxial approximation:
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i ¥
b
I(xe, YiXa ¥o) = —— d‘jlidthxdﬁPa%—DX ﬁ——ﬂP 8§+_ R+
(T2)° _¥

DR
o

(11.14)
“1(x, h)m(Dx, Dh)exp[J (DxX + Dyh + XDx+th)}

(11.15)
To get the intensity of the diffraction pattern, weset x; = X,,y; = Ys.
Dx® 0 Dy® O y®0
¥
I(xy) = —=_ . O (Dx, Dh)fp(Dx, Dh)exp[J (xDx+th)}dedDh (11.16)
[z —¥
where
¥ Dx - _Dhg Dx _ Dh
o} Oz
P(Dx,Dh) = &g, ﬁ)Pai— A ——0P*% * K+ — R+ = Ddxdh (11.17)
¥

If 1(x, i) is constant over the aperture, then P is just the autocorrelation function of the complex
pupil function.

(11.18)

The intensity distribution is a Fourier Transform of P(Dx, Dh);(Dx, Dh). Notethevalid range

Dd
onzis z> 2IT°, assuming that d.<D. However, if d.>D (as with coherent illumination),

then

2
z> 2'% (same as Fraunhofer)

Interpretation
Check the coherent limit. We should get the Fraunhofer formula. Full coherence: ft = 1.

Then

(11.19)
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checks

Now let’s check for nearly incoherent illumination, where the coherence area << aperture area
(d. «D). Then ft(Dx, Dh) issharply peaked near the origin.

Near (Dx, Dh) = (0,0),P hasits maximum vaueof IA.

¥
1(%, ) @"’—A2 OGN (DX, Dh)exp[jlg—p(Dxx+ Dhy)}dedDh (11.20)
()" z

The intensity of the diffraction pattern is a Fourier Transform of the mutual coherence function.

- Since d. « D, thelight diffracts more rapidly, with alarger diffraction angle than for
coherent illumination

- In fact, the divergence is controlled only by d. in thislimit. The aperture in this case has
anegligible effect!

- Recdll the result from the Van Cittert - Zernike theorem. The coherence area of dif-
fracted light in afar-field is related to the Fourier Transform of the aperture.

v v

incoherent . A
gpf?eren(’; ljﬂ(f:;)heren; coherence
( It ras{te ( It rgcte area

illumination _Inj?\sly intensity .

Now we consider the intermediate case: partialy coherent illumination

Both P and ft play arolein determining the shapeof (X, y). (X y) isdetermined by the
convolution of the transforms of P and m

1(xy) = |°2F[P “ = o _F[P]A F[m (11.21)
(') (I'z)

(11.22)

Spatial_coherence pt3_post.fm -81- Chapter 11



University of California, Berkeley Prof. J. Bokor
EE290F

Thus, the Fraunhofer diffraction pattern is convolved with F[ft].

Asthe coherence areais reduced, the diffraction pattern gets smoothed and broadened out.
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