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Zernike Circle Polynomials and Optical Aberrations of Systems with
Circular Pupils

By Virendra N. Mahajan, The Aerospace Corporation,
Los Angeles, California 90009

Abstract
Zernike circle polynomials, their numbering scheme, and
relationship to balanced optical aberrations of systems with
circular pupils are discussed.

Introduction
Zernike polynomials were introduced by Zernike for his
phase contrast method for testing the figure of circular mir-
rors figures.' They were used by Nijboer2'3 to balance the
classical aberrations of a power-series expansion of the ab-
erration function of an optical imaging system and to study
the effects of small aberrations on the diffraction images
formed by rotationally symmetric systems with circular pu-
pils. Noll used them to describe the aberrations introduced
by Kolmogorov atmospheric turbulence.4 Today, they are in
widespread use in optical design as well as in optical test-
ing. However, there appears to be no standard for their form
or their ordering, i.e., numbering.5 -7 In this first of several
notes, we outline the characteristics of Zernike circle poly-
nomials and reemphasize the use of their orthonormal form
and ordering first suggested by Noll. The use of orthonor-
mal polynomials in the expansion of an aberration function
has the advantage that the coefficients of the expansion
terms represent their standard deviations. The ordering
scheme discussed lends itself to easy calculation of the num-
ber of terms through a certain order in the expansion for
general as well as rotationally symmetric optical systems. In
future Notes we will discuss Zernike annular polynomials8

appropriate for systems with annular pupils as well as
Zernike-Gauss polynomials, 8 9 which are suitable for sys-
tems with Gaussian pupils. Unlike circle polynomials, these
polynomials are not readily available, especially, in one
place. It is hoped that these issues of Notes will fill this gap.

is a polynomial of degree n in p containing terms in pn,

pl 2 , . . ., and pm. The radial polynomials Rn'(p) are even or
odd in p depending on whether n (or m) is even or odd,
respectively. Note that

R,,m(O) = m, { n/2 odd' Rm(1) = 1, R"(p) = pn.(3)

The index n represents the radial degree or the order of the
polynomial since it represents the highest power of p in the
polynomial, and m may be called the azimuthal frequency.

The orthogonalities of the radial polynomials and the
angular functions are:

1 1J Rm(p)R(p)pdp = 2(n + 1) n'lT m,

cosm0 cosm'OdO = r(1 + 5mt) mm',

20
JcosmO sinm'OdO = .

(4)

(5a)

(5b)

and

J2,r

sinm0 sinm'Od0 = 7r'mm.
0o

(5c)

The expansion or the aberration coefficients are given by:

(Cwm, Swm) = (1/,T)[2(n + 1)/(1 + 8,no)11/2

7,o
W(p, 0)Rm(p)(cosm0, sinmO)pdpdO, (6)

as may be seen by substituting Eq. (1) into Eq. (6). It should
be evident that sno = 0. We note that the angular dependence
of an aberration term consists of cosine (or the sin) of an

Zernike Circle Polynomials and the Aberration Function
Consider an optical system with a circular pupil of radius
a. Let (r, 0) be the polar coordinates of a point on the pupil.
Let p = r/a so that 0 p c 1. Of course, 0 0 < 2r. The wave
aberration function W(p, 0) of the system can be expanded
in terms of a complete set of Zernike circle polynomials
R'(p)cos mO and Rn'(p)sin me, which are orthogonal over a
unit circle in the form:

x ,,

W(p, 0) = [2(n + 1)/(1 + mo)]1/2 R(p)
1=0 m=O

(Cnm COS m0 + Snm sin me), (1)
where cnm and nm are the expansion or the aberration
coefficients, n and m are positive integers including zero,
n - m 0 and even, ij is a Kronecker delta, and

(n-m)/2 (~1)1(n -s)!-

Rm'(p) EPn2 211(P) 5, n + m -)!(n -m ) -2s (2)
=°s( 2 -)( 2 )
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integral multiple of angle 0 rather than the integral power
of the cosine of the angle as in a power-series expansion of
the aberration function in pupil coordinates. The aberration
terms of a power-series expansion are called classical ab-
errations. Because of their orthogonality, the aberration
terms of a Zernike-polynomial expansion are referred to as
the orthogonal aberrations. The orthonormal Zernike ab-
errations and the names associated with some of them are
also listed in Table 1 for n c 8. The number of aberration
terms in the expansion of the aberration function through
a certain order n is given by

N., = (n + )(n + 2)/2. (7)

Note that piston term with n = m = 0 does not constitute
an aberration, although it is counted as such in Eq. 7. For
example, the number of aberrations through the fourth or-
der (n ' 4) is 15.

We note that each Zernike or orthogonal aberration is
made up of one or more classical aberrations. The classical
aberration of the highest degree in pupil coordinates is op-
timally balanced with those of equal and lower degrees such
that its variance across the pupil is minimized. Accordingly,
a Zernike polynomial aberration may also be referred to as
a balanced aberration. For example, the Zernike primary
spherical aberration R°(p) consists of a classical primary
spherical aberration (p4 term) optimally balanced with de-
focus (p

2 term) to minimize its variance. It may be called
balanced primary spherical aberration. Similarly, the
Zernike secondary spherical aberration R'(p) consists of a
classical secondary spherical aberration (p6 term) optimally
balanced with primary classical spherical aberration and
defocus, and may be called balanced secondary spherical
aberration. Inclusion of the constant term in these aberra-
tions makes their mean value zero. Since unity [R'(p)I is one
of the Zernike aberrations, the orthogonality of an aberra-
tion also implies that its mean value is zero. The Zernike
primary coma R'(p)cos0 consists of classical primary coma
(p

3
COS 0 term) optimally balanced with tilt (p cos 0 term) and

may be called balanced coma. The Zernike primary astig-
matism R'(p)cos20 consists of classical primary astigmatism
(p2 cos20 term) optimally balanced with defocus.

The Zernike polynomials are unique in that they are
the only complete set of polynomials in two coordinate vari-
ables p and 0 that are (a) orthogonal over a unit circle, (b)
are invariant in form with respect to rotation of the axes
about the origin, and (c) include a polynomial for each per-
missible pair of n and m values. They are used in optical
design and testing for expressing an aberration function be-
cause of their association with optimally balanced classical
aberrations.

The aberration function may also be written in terms
of orthonormal Zernike circle polynomials Zj(p, 0) in the
form

W(p,0) = E ajZ(P,0),
i=l

(8)

where the index j is a polynomial-ordering number, which
is a function of both n and in, a is the expansion or aber-
ration coefficient, and

Zevenj(PI0) = 2(n + 1) R,'(p)cosm0, m 0 0, (9a)

Zoddj(P0) = 2(n+ 1) R,'(p)sinm0, m # 0, (9b)

Z (p,0) = n + 1 R,(p), m = . (9c)

The relationships among the indices j, n, and m are given in
Table 1. The polynomials are ordered such that even j cor-
responds to a symmetric polynomial given by cos mO, while
odd j corresponds to an antisymmetric polynomial varying
as sin mO. For a given value of n, a polynomial with a lower
value of m is ordered first. This ordering is different from
those considered in recent publications.10 -'2

The orthonormality of Zernike polynomials implies
that:

0 J ~ Z,(p,0)Zj,(p,0)pdpdo J J pdpdO = 5ji.

(10)

The expansion coefficients aj are given by

a, = T-1 W(po,0)Zj(p,0)pdpd0. (11)

Aberration Variance
An advantage of the orthogonal-polynomial expansion of
the aberration function in the form of Eq. 1 is that each
aberration coefficient c,,1,, or s,,,, represents the standard de-
viation of the corresponding aberration term across the pu-
pil, and, therefore, it is very easy to determine the standard
deviation of the aberration function once the expansion co-
efficients are known. We note that the mean and mean
square values of the aberration function are given by:

(W(p,0)) = f f W(p,0)jpdd0 pdpdO

= coo (12)

(since O'7 cosmOdO = 27T'mo), and

(IA/'(p,0)) = l VV2 (p,0)pdpdo i ~:1 2dp
(W2(p 0)) =J J W(pfdpd /o JO pd

= I (C2112 + S..),
)1=0 ...=0

(13)

as may be seen by substituting Eq. (1) and using the or-
thogonality Eqs. (4) and (5). Hence, the variance of the ab-
erration function is given by:

C4~= (W 2(p,0)) - (W(p,0))2

- 1 (1 
xi= ,.== E E (C2.m + S .),

1=1 11=0

(14)

where crw is its standard deviation. The root mean square
(rms) value of the aberration function is given by
(W2(p, 0))1/2. This is not equal to its standard deviation or
unless its mean value coo = 0. Since the mean value of an
aberration term (except the piston) is zero, its rms value is
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TABLE 1. Orthonormal Zernike circle polynomials Zj(p, 0). The indices j, n, and m are defined as the polynomial number,
radial degree, and azimuthal frequency, respectively. The polynomials Zj are ordered such that even j corresponds to a
symmetric polynomial defined by cosm0, while odd j corresponds to an antisymmetric polynomial given by sinm0. For
a given n, a polynomial with a lower value of m is ordered first. x = p cos0, y = p sin0, 0 p c 1, 0 c 0 < 27r.

j n m Zj(p, 0) Name
1 0 0 1 Piston
2 1 1 2pcos 0 x tilt
3 1 1 2psin 0 y tilt
4 2 0 \/'(2p2 - 1) Defocus
5 2 2 6p2 sin 20
6 2 2 6p2 cos 20 Astigmatism
7 3 1 \/(3p3 - 2p)sin 0 Primary y coma
8 3 1 N/(3p3 - 2p)cos 0 Primary x coma
9 3 3 \/'p3 sin 30

10 3 3 \_p3 cos 30
11 4 0 (6p4 - 6p2 + 1) Primary spherical
12 4 2 \/Y6(4p4 - 3p2)cos 20 Secondary astigmatism
13 4 2 \/Th(4p4 - 3p')sin 20
14 4 4 \/0p4 cos 40
15 4 4 \/1p4 sin 40
16 5 1 \/ii(1Op5 - 12p3 + 3p)cos 0 Secondary x coma
17 5 1 VI(10p5 - 12p3 + 3p)sin 0 Secondary y coma
18 5 3 N(5p5 - 4p3)cos 30
19 5 3 \/j_(5p5 - 4p3)sin 30
20 5 5 \/'ip5 cos 50
21 5 5 V/p sin 50
22 6 0 N/(20p6 - 30p4

+ 12 p2
- 1) Secondary spherical

23 6 2 \/T1(15p6 - 20p4 + 6p')sin 20
24 6 2 N/i1(15p6 - 20p4

+ 6p')cos 20
25 6 4 \/i1(6p6 - 5p4)sin 40
26 6 4 N/i1(6p6 - 5p4 )cos 40
27 6 6 /1p6 sin 60
28 6 6 Vj/ip6 cos 60
29 7 1 4(35p7 - 60p5 + 30p3 - 4p)sin 0 Tertiary y coma
30 7 1 4(35p7 - 60p5 + 3Op3 - 4p)cos 0 Tertiary x coma
31 7 3 4(21p7 - 30p5 + 10p3)sin 30
32 7 3 4(21p7 - 3 0p5 + 10p3)cos 30
33 7 5 4(7p7 - 6p)sin 50
34 7 5 4(7p7 - 6p5)cos 50
35 7 7 4p7 sin 70
36 7 7 4p7 cos 70
37 8 0 3(70o - 140o6 + 90p4 - 20n2 + 1) Tertiary spherical

equal to its standard deviation, which in turn is simply
equal to its aberration coefficient as defined in Eq. (1).

Considering the expansion of the aberration function
given by Eq. (8), we find that

(W(p,0)) = a (15a)

and

(W2(p, 0)) = E aJ. (15b)
J~l

Thus, except for a,, the expansion coefficients aj's represent
the standard deviation of the corresponding jth term. The
variance of the aberration function is given by

r = 2 j. (16)

Rotationally Symmetric Systems
The aberration function of an optical imaging system that
is rotationally symmetric about its optical axis (i.e., the line

joining the vertices of its surfaces) must be symmetric about
the tangential plane (which contains the optical axis and the
point object for which the aberration function is being con-
sidered). Hence, if the angle 0 is measured from the tan-
gential plane; for example, if the x axis lies in the tangential
plane, then sin mO terms of Eqs. 1 and 8 must be zero; i.e.,
the aberration coefficients snm must be zero. Thus, in
the design of rotationally symmetric optical systems, only
cosm0 terms need to be considered. In that case, the number
of aberration terms through a certain order n is given by

N., = (n + 2)(n + 4)/8. (17)

The number of aberration terms through the fourth order is
now equal to 6. They consist of piston and the terms that
correspond to the five Seidel or primary classical aberra-
tions.

Discussion
In the fabrication and testing of rotationally symmetric op-
tical elements, the fabrication errors will generally consist
of both the cos m 0 and sin m 0 terms, even though the design
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aberrations of a rotationally symmetric system will consist
of only the former. Similarly, aberrations introduced by ther-
mal distortion of optical elements may consist of both types
of terms. The ordering of Zernike polynomials as in Table
1 does not imply that the aberration coefficients decrease as
n increases. It is quite possible, for example, that all is larger
than a9 or a1o. The random aberrations introduced by Kol-
mogorov atmospheric turbulence, on the other hand, are
such that the time-averaged mean square value of the ab-
erration coefficients decreases as n increases and, for a given
value of n, it is independent of the corresponding values of
M.4
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Specifying Dispersion in the Design of Diffractive Optics

By Donald C. O'Shea, School of Physics and Center for
Optical Science and Engineering, Georgia Institute of
Technology, Atlanta, GA 30332-0430

Abstract
The chromatic aberration of a diffractive optical surface can
be specified within a lens design program using the Sweatt
model' by choosing the fictitious high refractive index equal
to its corresponding wavelength in an appropriate unit.

One of the most startling facts about diffractive optical
lenses is their extremely high dispersion compared to or-
dinary glass. The power of a diffractive lens is proportional
to the wavelength of the illuminating light. This means that
in the visible the V-number for a diffractive lens is

Vd = /A = Ad/(AFA) = -3.45. (1)

This strong negative dispersion can be used with conven-
tional lenses to produce a hybrid achromat. Because of the
strong dispersion, only a modest amount of optical power
in the diffractive surface is required to produce the correc-
tion.

Sweatt' has shown that holographic optical elements
(HOEs) can be modeled using conventional lens design pro-
grams by treating the HOE as a thin medium of high re-
fractive index (n = 100 to 10,000). This technique can also be
applied to diffractive optical elements. The index must be
high enough to avoid significant errors in the ray trace, but

not too high as to slow clown program calculations signifi-

cantly. Farn2 has derived two criteria that must be satisfied
to assure accuracy of the model.

Once these criteria are satisfied, the exact value of the
index is still arbitrary. If one wishes to study the chromatic
aberrations of a diffractive lens or a refractive-diffractive
hybrid, three indices must be chosen. Because the power of
the surface is proportional to wavelength, it is both correct
and convenient to choose the indices to be equal to their
corresponding wavelengths in some appropriate unit.

For example, in the visible region of the spectrum,
choosing the ultra-high refractive indices to be equal to the
wavelength in nanometers might not provide sufficient ac-
curacy according to Farn.2 In this case the nearly defunct
Angstrom unit may have a modern day role to play. In the
infrared region across the 8 to 12 pm band, the refractive
indices could be specified in nanometers. This easily re-
membered algorithm should be useful to designers who are
analyzing chromatic effects of diffractive surfaces when
using the Sweatt model with conventional lens design pro-
grams.
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