LITHOGRAPHY STEPPER OPTICS

WHAT A DEEP-UV STEPPER REALLY LOOKS LIKE

"WAVEFRONT ENGINEERING" TECHNIQUES IN PHOTOLITHOGRAPHY

PHASE-SHIFT MASK TECHNIQUES

Alternating phase mask (Levenson)

Attenuated phase mask

VACUUM ULTRAVIOLET TRANSMISSION CUTOFFS OF AVAILABLE OPTICAL MATERIALS

UC Berkeley

Stanford

NSF/SRC-ERC: LITHOGRAPHY FOR 100 nm AND BEYOND

MIT

CONTINUED EXTENSION OF OPTICAL PROJECTION

- Historical approach: (MFS = $k_1 \lambda / NA$)
 - \Rightarrow Increase NA
 - \Rightarrow Decrease λ
 - \Rightarrow Decrease k₁
- Transmission optics reach to 193 nm
 - Expect limiting NA ≈ 0.75 , k₁ ≈ 0.5 (\Rightarrow MFS ≈ 130 nm)
- What about Vacuum UV? ($\lambda = 100 \text{ nm} 200 \text{ nm}$ range)
 - Diminishing returns absent further NA increase

srcjb96.doc

1996 SRC Lithography Review

J. Bokor

ELECTRONICS RESEARCH LAB, UNIVERSITY OF CALIFORNIA, BERKELEY

OPTICAL LITHOGRAPHY TODAY (1997) 0.25 μm FEATURE SIZE

DUV (248 nm), Catadioptric optics

OPTICAL LITHOGRAPHY IN THE FUTURE 100 nm \rightarrow 30 nm FEATURE SIZE

EUV (13 nm), All-reflective optics, Reflection mask

DARPA/SRC Network for Advanced Lithography

1997 Resist / EUVL Imaging Status

70 nm lines

70 nm lines/spaces (2:1 pitch) Coded for 70nm 15.6 mJ/cm² dose 10x microstepper TSI process No crosslinker Etch selectivity 45:1

EUVL Trend

J. Bokor UC Berkeley