
CS39N
The Beauty and Joy of Computing

Lecture #4 : Computational Game Theory

2009-09-14

A 19-year project led by Prof Jonathan
Schaeffer, he used dozens (sometimes
hundreds) of computers and AI to
prove it is, in perfect play, a … draw!
This means that if two Gods were to
play, nobody would ever win!

UC Berkeley
Computer Science

Lecturer SOE
Dan Garcia

www.cs.ualberta.ca/~chinook/ UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (2)

Garcia, Fall 2009

  History
  Definitions

  Game Theory
  What Games We Mean
  Win, Lose, Tie, Draw
  Weakly / Strongly Solving

  Gamesman
  Dan’s Undergraduate

R&D Group
  Demo!!

  Future

Computational Game Theory

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (3)

Garcia, Fall 2009

  CS research areas:
  Artificial Intelligence
  Biosystems & Computational Biology
  Computer Architecture & Engineering
  Database Management Systems
  Graphics
  Human-Computer Interaction
  Operating Systems & Networking
  Programming Systems
  Scientific Computing
  Security
  Theory
  …

Computer Science … A UCB view

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (4)

Garcia, Fall 2009

  A Hoax!
  Built by Wolfgang von

Kempelen
  to impress the Empress

  Could play a strong game
of Chess
  Thanks to Master inside

  Toured Europe
  Defeated Benjamin Franklin

& Napoleon!

  Burned in an 1854 fire
  Chessboard saved…

The Turk (1770)

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (5)

Garcia, Fall 2009

  The “Father of
Information Theory”
  Founded the digital computer
  Defined fundamental limits

on compressing/storing data

  Wrote “Programming a
Computer for Playing
Chess” paper in 1950
  C. Shannon, Philos. Mag. 41,

256 (1950).
  All chess programs today

have his theories at their core

Claude Shannon’s Paper (1950)

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (6)

Garcia, Fall 2009

  Kasparov World Champ

  1996 Tournament
  First game DB wins a classic!
  But DB loses 3 and draws 2 to

lose the 6-game match 4-2
  In 1997 Deep Blue upgraded,

renamed “Deeper Blue”

  1997 Tournament
  GK wins game 1
  GK resigns game 2

  even though it was draw!

  DB & GK draw games 3-5
  Game 6 : 1997-05-11 (May 11th)

  Kasparov blunders move 7, loses in 19
moves. Loses tournament 3 ½ - 2 ½

  GK accuses DB of cheating. No rematch.

  Defining moment in AI history

Deep Blue vs Garry Kasparov (1997)

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (7)

Garcia, Fall 2009

Economic
  von Neumann and

Morgenstern’s 1944
Theory of Games and
Economic Behavior

  Matrix games
  Prisoner’s dilemma,

auctions
  Film : A Beautiful Mind

(about John Nash)
  Incomplete info,

simultaneous moves
  Goal: Maximize payoff

 Computational
  R. C. Bell’s 1988

Board and Table
Games from many
Civilizations

  Board games
  Tic-Tac-Toe, Chess,

Connect 4, Othello
  Film : Searching for

Bobby Fischer
  Complete info,

alternating moves
  Goal: Varies

What is “Game Theory”?

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (8)

Garcia, Fall 2009

  No chance, such as dice
or shuffled cards

  Both players have
complete information
  No hidden information, as in

Stratego & Magic

  Two players (Left & Right)
usually alternate moves
  Repeat & skip moves ok
  Simultaneous moves not ok

  The game can end in a
pattern, capture, by the
absence of moves, or …

What “Board Games” do you mean?

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (9)

Garcia, Fall 2009

Basic Definitions
  Games are graphs

  Position are nodes
  Moves are edges

  We strongly solve game
by visiting every position
  “Playing” every game ever

  Each position is (for
player whose turn it is)

 Winning (∃ losing child)
 Losing (All children winning)
 Tieing (!∃ losing child, but ∃

tieing child)
 Drawing (can’t force a win or

be forced to lose)

W

W W W

..."

L

L

W W W

..."

W

T

W W W

..."

T

D

W W W

D

W

..."

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (10)

Garcia, Fall 2009

What did you mean “strongly solve”?

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (11)

Garcia, Fall 2009

Weakly Solving A Game (Checkers)

Endgame
databases

(solved)

Master:
main line of

play to consider

Workers:
positions to search

Log of Search Space Size

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (12)

Garcia, Fall 2009

Example: 1,2,…,10
  Rules (on your turn):

  Running total = 0

  Rules (on your turn):
  Add 1 or 2 to running total

  Goal
  Be the FIRST to get to 10

  Example
  Ana: “2 to make it 2”
  Bob: “1 to make it 3”
  Ana: “2 to make it 5”
  Bob: “2 to make it 7”  photo
  Ana: “1 to make it 8”
  Bob: “2 to make it 10” I WIN!

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (13)

Garcia, Fall 2009

Example: Tic-Tac-Toe

  Rules (on your turn):
  Place your X or O in an

empty slot on 3x3 board

  Goal
  If your make 3-in-a-row

first in any row /
column / diag, win

  Else if board is full with
no 3-in-row, tie

  Misére is tricky
  3-in-row LOSES
  Pair up and play now,

then swap who goes 1st

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (14)

Garcia, Fall 2009

Tic-Tac-Toe Answer Visualized!
  Recursive Values Visualization Image
  Misére Tic-tac-toe

  Outer rim is position
  Inner levels moves
  Legend

Lose
Tie
Win

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (15)

Garcia, Fall 2009

Computational Game Theory
  Large games

  Can theorize strategies, build AI systems to play
  Using “Endgame databases”

  Can study endgames, smaller version of orig
  Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.

  Can put 18 years into a game [Schaeffer, Checkers]

  Small-to-medium games
  Can have computer strongly solve and…

  Play against it and teach us strategy
  Allow us to test our theories on the database, analysis
  Analyze human-human game and tell us where we erred!

  Big goal: Hunt Big Game – those not solved yet
  I wrote GAMESMAN in 1988 (almost 20 yrs ago!),

the basis of my GamesCrafters research group

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (16)

Garcia, Fall 2009

GamesCrafters
  Undergraduate Computational

Game Theory Research Group

  250+ students since 2001
  We now average 20/semester!
  They work in teams of 2+

  Most return, take more senior
roles (sub-group team leads)
  Maximization (bottom-up solve)
  Oh, DeepaBlue (parallelization)
  GUI (graphical interface work)
  Retro (GUI refactoring)
  Architecture (core)
  New/ice Games (add / refactor)
  Documentation (games & code)

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (17)

Garcia, Fall 2009

GamesCrafters
  Projects span CS areas

  AI : Writing “intelligent” players
  DB: How do we store results?
  HCI: Implementing interfaces
  Graphics: Values visualizations
  SE: Lots of SE juice here, it’s big!

  Defining & implementing APIs
  Managing open source SW

  OS: We have our own VM
  Also eHarmony & net DB

  PL: We’re defining languages to
describes games and GUIs

  THY: Lots of combinatorics here:
position & move hash functions

  Perennial Cal Day favorite!
  “Research and Development

can be fun?!”

UC Berkeley CS39N “The Beauty and Joy of Computing” : Computational Game Theory (19)

Garcia, Fall 2009

  Board games are
exponential in nature
  So has been the

progress of the speed /
capacity of computers!

  Therefore, every few
years, we only get to
solve one more “ply”

  One by one, we’re
going to solve them
and/or beat humans
  We’ll never solve some

  E.g., hardest game : Go

Future

