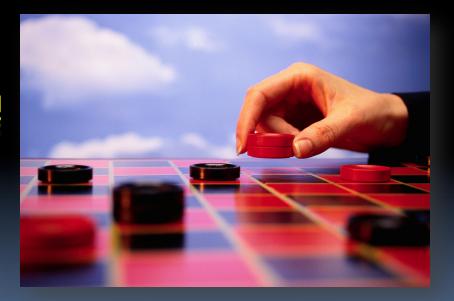


CS39N The Beauty and Joy of Computing


Lecture #4 : Computational Game Theory

2009-09-14

UC Berkeley Computer Science Lecturer SOE Dan Garcia

CHECKERS SOLVED IN 2007!

A 19-year project led by Prof Jonathan Schaeffer, he used dozens (sometimes hundreds) of computers and AI to prove it is, in perfect play, a ... draw! This means that if two Gods were to play, nobody would ever win!

www.cs.ualberta.ca/~chinook/

Computational Game Theory

- History
- Definitions
 - Game Theory
 - What Games We Mean
 - Win, Lose, Tie, Draw
 - Weakly / Strongly Solving

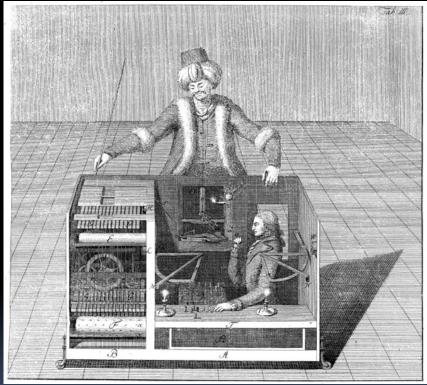
Gamesman

- Dan's Undergraduate
 R&D Group
- Demo!!
- Future

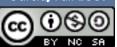
www.eecs.berkeley.edu/Research/Areas/

Computer Science ... A UCB view

- CS research areas:
 - Artificial Intelligence
 - Biosystems & Computational Biology
 - Computer Architecture & Engineering
 - Database Management Systems
 - Graphics
 - Human-Computer Interaction
 - Operating Systems & Networking
 - Programming Systems
 - Scientific Computing
 - Security
 - Theory



The Turk (1770)


- A Hoax!
- Built by Wolfgang von Kempelen
 - to impress the Empress
- Could play a strong game of Chess
 - Thanks to Master inside
- Toured Europe
 - Defeated Benjamin Franklin & Napoleon!
- Burned in an 1854 fire
 - Chessboard saved...

The Mechanical Turk (1770)

en.wikipedia.org/wiki/Claude_Shannon#Shannon.27s_computer_chess_program Claude Shannon's Paper (1950)

- The "Father of Information Theory"
 - Founded the digital computer
 - Defined fundamental limits on compressing/storing data
- Wrote "Programming a Computer for Playing Chess" paper in 1950
 - C. Shannon, *Philos. Mag.* 41, 256 (1950).
 - All chess programs today have his theories at their core

Claude Shannon (1916-2001)

en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

Deep Blue vs Garry Kasparov (1997)

Kasparov World Champ

1996 Tournament

- First game DB wins a classic!
- But DB loses 3 and draws 2 to lose the 6-game match 4-2
- In 1997 Deep Blue upgraded, renamed "Deeper Blue"

1997 Tournament

- GK wins game 1
- GK resigns game 2
 - even though it was draw!
- DB & GK draw games 3-5
- Game 6 : 1997-05-11 (May 11th)
 - Kasparov blunders move 7, loses in 19 moves. Loses tournament 3 ¹/₂ - 2 ¹/₂
 - GK accuses DB of cheating. No rematch.

Defining moment in AI history

IBM's Deep Blue vs Garry Kasparov

UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (6)

www.cs.berkeley.edu/~ddgarcia/eyawtkagtbwata What is "Game Theory"?

Combinatorial

- Sprague and
 Grundy's 1939
 Mathematics and
 Games
- Board games
- Nim, Domineering, dots and boxes
- Film: Last Year in Marienbad
- Complete info, alternating moves
- Goal: Last move

Computational

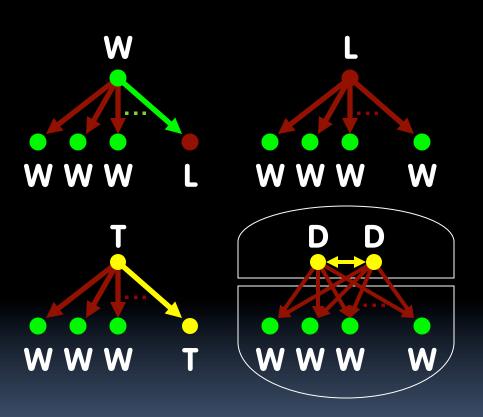
- R. C. Bell's 1988
 Board and Table
 Games from many
 Civilizations
- Board games
- Tic-Tac-Toe, Chess,
 Connect 4, Othello
- Film : Searching for Bobby Fischer
- Complete info, alternating moves
- **Goal: Varies**

Economic

- von Neumann and Morgenstern's 1944
 Theory of Games and Economic Behavior
- Matrix games
- Prisoner's dilemma, auctions
- Film : A Beautiful Mind (about John Nash)
- Incomplete info, simultaneous moves
- Goal: Maximize payoff

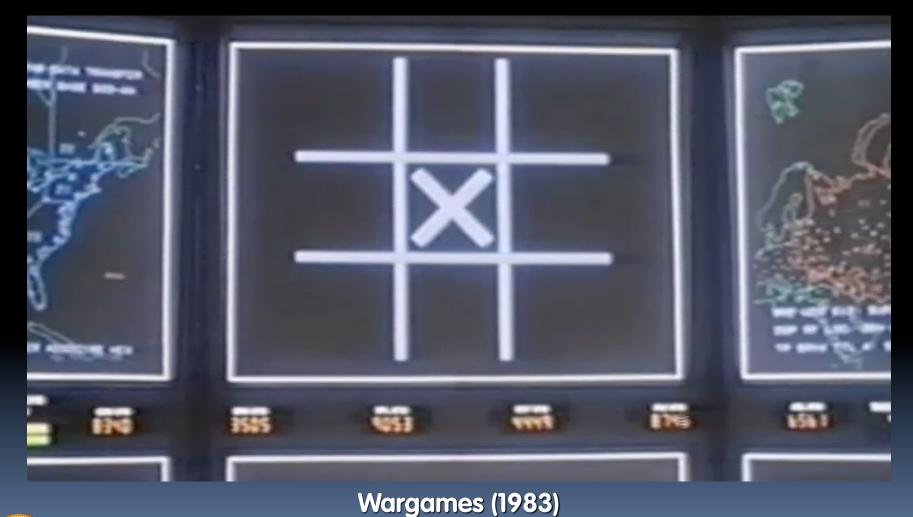
What "Board Games" do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
 - No hidden information, as in Stratego & Magic
- Two players (Left & Right) usually alternate moves
 - Repeat & skip moves ok
 - Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or ...

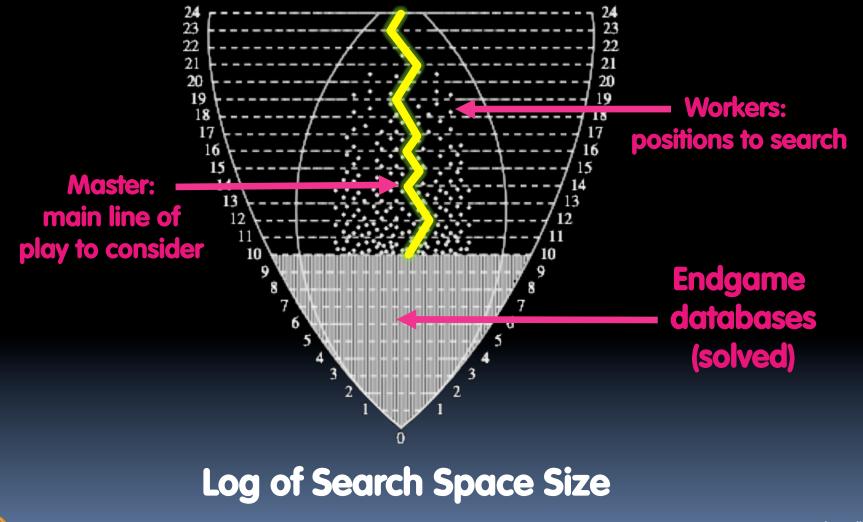


Basic Definitions

Games are graphs


- Position are nodes
- Moves are edges
- We strongly solve game by visiting every position
 - "Playing" every game ever
- Each position is (for player whose turn it is)
 - Winning (∃ losing child)
 - Losing (All children winning)
 - Tieing (!3 losing child, but 3 tieing child)
 - <u>Drawing</u> (can't force a win or be forced to lose)

What did you mean "strongly solve"?



UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (10)

Thanks to Jonathan Schaeffer for this slide... Weakly Solving A Game (Checkers)

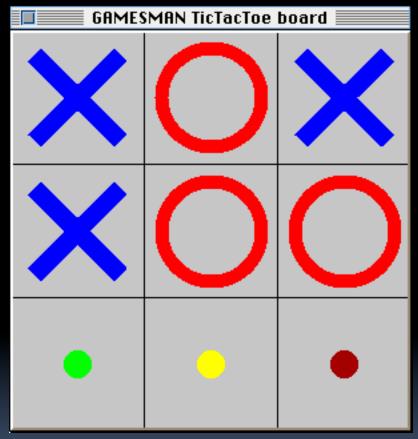
Garcia, Fall 2009

UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (11)

Example: 1,2,...,10

- Rules (on your turn):
 - Running total = 0
- Rules (on your turn):
 - Add 1 or 2 to running total
- Goal
 - Be the FIRST to get to 10
- Example
 - Ana: "2 to make it 2"
 - Bob: "1 to make it 3"
 - Ana: "2 to make it 5"
 - Bob: "2 to make it $7" \rightarrow$ photo
 - Ana: "1 to make it 8"
 - Bob: "2 to make it 10" I WIN!

7 ducks (out of 10)

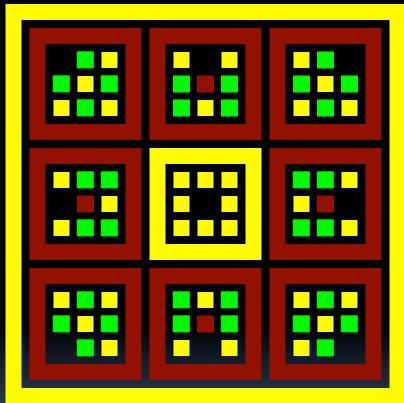


UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (12)

Example: Tic-Tac-Toe

- Rules (on your turn):
 - Place your X or O in an empty slot on 3x3 board
- Goal
 - If your make 3-in-a-row <u>first</u> in any row / column / diag, win
 - Else if board is full with no 3-in-row, tie
- Misére is tricky
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes 1st

Values Visualization for Tic-Tac-Toe



Tic-Tac-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misére Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - Lose
 - Tie
 - Win

Misére Tic-Tac-Toe 2-ply Answer

UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (14)

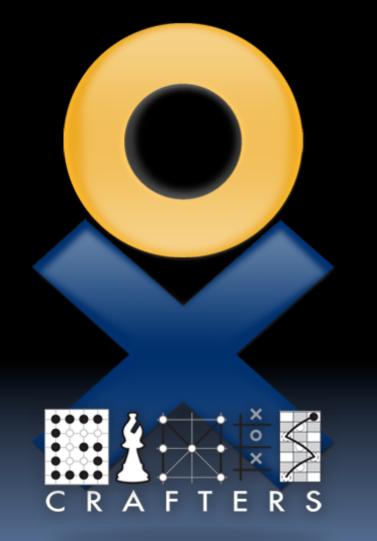
Computational Game Theory

Large games

- Can theorize strategies, build AI systems to play
 - Using "Endgame databases"
- Can study endgames, smaller version of orig
 - Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.
- Can put 18 years into a game [Schaeffer, Checkers]

Small-to-medium games

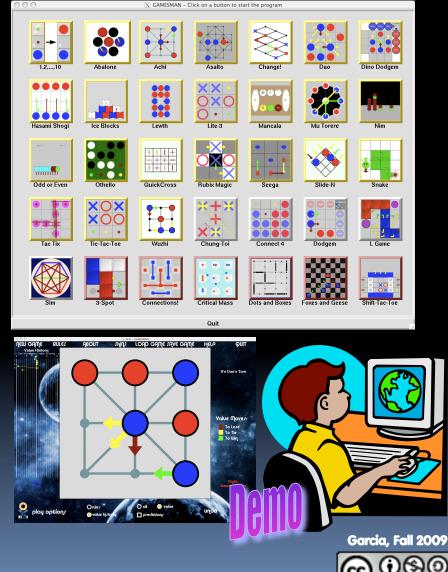
- Can have computer strongly solve and...
 - Play against it and teach us strategy
 - Allow us to test our theories on the database, analysis
 - Analyze human-human game and tell us where we erred!
- Big goal: Hunt Big Game those not solved yet
- I wrote GAMESMAN in 1988 (almost 20 yrs ago!),



GamesCrafters.berkeley.edu

GamesCrafters

- Undergraduate Computational Game Theory Research Group
- 250+ students since 2001
 - We now average 20/semester!
 - They work in teams of 2+
- Most return, take more senior roles (sub-group team leads)
 - <u>Maximization (bottom-up solve)</u>
 - <u>O</u>h, DeepaBlue (parallelization)
 - <u>G</u>UI (graphical interface work)
 - <u>Retro</u> (GUI refactoring)
 - <u>A</u>rchitecture (core)
 - <u>New/ice Games (add / refactor)</u>
 - <u>D</u>ocumentation (games & code)


UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (16)

GamesCrafters

- Projects span CS areas
 - AI : Writing "intelligent" players
 - DB: How do we store results?
 - HCI: Implementing interfaces
 - Graphics: Values visualizations
 - SE: Lots of SE juice here, it's big!
 - Defining & implementing APIs
 - Managing open source SW
 - OS: We have our own VM
 - Also eHarmony & net DB
 - PL: We're defining languages to describes games and GUIs
 - THY: Lots of combinatorics here: position & move hash functions
- Perennial Cal Day favorite!
- "Research and Development can be fun?!"

Lines of Code:	
8K	Java
80K	Tcl/Tk
155K	С

UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (17)

Future

- Board games are exponential in nature
 - So has been the progress of the speed / capacity of computers!
 - Therefore, every few years, we only get to solve one more "ply"
- One by one, we're going to solve them and/or beat humans
 - We'll never solve some
 - E.g., hardest game : Go

17408965065903192790718 8238070564367946602724 950263541194828118706801 05167618464984116279288 988714938612096988881632 07806137549871813550931 2951480336966057289307 5468180597603

Go's search space ~ 3^{361}

UC Berkeley CS39N "The Beauty and Joy of Computing" : Computational Game Theory (19)

