

C539N

The Beauty and Joy

 of Computing
Lecture \#11 Recursion II

UC Berkeley

Computer Science
Lecturer SOE
2009-11-02
Dan Garcia
MUSCLE-BOUND COMPUTER INTERFACE
Researchers at Microsoft, UW and U
Toronto have come up with a technique to interact with a computer by flexing muscles (sensor electrodes on forearm)

You already know it!

$$
\begin{aligned}
& \text { (6) }
\end{aligned}
$$

(10)

A KiNG IS A SON OF A King

- Recursion: (noun) See recursion. ©
- An algorithmic technique where a function, in order to accomplish a task, calls itself with some part of the task
- Recursive solutions involve two major parts:
- Base case(s), the problem is simple enough to be solved directly
- Recursive case(s). A recursive case has three components:
- Divide the problem into one or more simpler or smaller parts
- Invoke the function (recursively) on each part, and
- Combine the solutions of the parts into a solution for the problem.
- Depending on the problem, any of these may be trivial or complex.

Linear Functional Pattern

- Functional programming
- It's all about the reporter return value
- There are no side-effects
- Recursion (arg) \{
if (base_case_test) \{
return (base_case_answer)
\} else \{
return (Combiner (SomePart (arg), Recursion(Rest(arg))))

\}

\}

```
Recursion arg
if Base Case Test
set answer * to Base Case Answer
else
set answer to Combiner Some Part arg with Rest arg
```

report answer

Linear Functional Example: n!

n	$n!$	
0	1	$n!=\prod_{k=1}^{n} k \quad$ for all $n \in \mathbb{N} \geq 0.00$

- Factorial(n) $=n$! Inductive definition:
- $n!=1 \quad, n=0$
- $n!=\mathbf{n}$ * $(\mathrm{n}-1)$!, $\mathrm{n}>0$
- What are...
- base_case_test
- $\mathrm{n}=0$
- base_case_answer - 1

SomePart (arg)
(arg)

```
Recursion(arg) \{
    if (base_case_test) \{
        return (base_case_answer)
    \} else \{
        return (Combiner (SomePart (arg),
                                    Recursion(Rest(arg))))
    \}
\}
```

Factorial (n) $\{$
if(n $==0)$
return (1)
\} else \{
return (n * Factorial(n-1))

Let's now trace...

en. wikipedia.org/wiki/Eibonacci number

Non-linear Functiongl Exomple: Fib

$n \quad F(n)$

- Inductive definition:

| 0 | 0 |
| :--- | :--- | :--- |
| 1 | 1 |
| 2 | 1 |
| 3 | 2 |
| 4 | 3 |
| 5 | 5 |
| 2 | |

$$
F(n):= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F(n-1)+F(n-2) & \text { if } n>1\end{cases}
$$

- What are...
- base_case_test
- $n<=1$
- base_case_answer - n

```
```

Recursion(arg)

```
```

Recursion(arg)
if(base_case_test) {
if(base_case_test) {
return(base_case_answer)
return(base_case_answer)
} else {
} else {
return(Combiner(SomePart(arg),
return(Combiner(SomePart(arg),
Recursion(Rest(arg))))
Recursion(Rest(arg))))
| }
| }
if(base_case_test)
if(base_case_test)
return(base_case_answer) ;
return(base_case_answer) ;
} else {
} else {
return (Combiner (SomePart (arg),
return (Combiner (SomePart (arg),
Recursion(Rest1 (arg)),
Recursion(Rest1 (arg)),
Recursion(Rest2(arg)),
Recursion(Rest2(arg)),
Recursion(Restn(arg)))) } }

```
```

 Recursion(Restn(arg)))) } }
    ```
```

- SomePart (arg)
- 0

Rest (arg) and

- Combiner


```
    Fib(n) \(\begin{aligned} & \text { if }(n<=1) \\ & \text { return }(n)\end{aligned}, ~\)
    Fib(n) \(\begin{aligned} & \text { if }(n<=1) \\ & \text { return }(n)\end{aligned}, ~\)
    Fib(n) \(\begin{aligned} & \text { if }(n<=1) \\ & \text { return }(n)\end{aligned}, ~\)
Fib (n) \{
```

 \} else \{
 return \((\) Eib \((n-1)+\) Eib \((n-2))\)
 Leonardo de Pisa aka, Fibonacci

Authoring: Trust the Recursion!

- When authoring recursive code:
- The base is usually easy: "when to stop?"
- In the recursive step
- How can we break the problem down into two:
- A piece I can handle right now
- The answer from a smaller piece of the problem
- Assume your self-call does the right thing on a smaller piece of the problem
- How to combine parts to get the overall answer?
- Practice will make it easier to see idea

Nowyou try one...

- Want to park unit-length cars on a block 10 units wide.

- In the ideal case, you can get 10 cars in.
- Assume no wiggling needed, they just drop in
- Assuming cars arrive \& park randomly on the open spaces, how many cars can park on avg?
- With a partner, write park (room) \rightarrow \# of cars
- Answer will be park (10)
E.g., \quad Given: place (room) randomly places rear bumper on a place place (10) from 0 to room-1 and returns location. Assumes room > 1!

10^{7} trials; avg = 7.2235337

```
            park(room)
        if(room < 1) {
            return(0)
|
*)
|
|
|
Number of simulations
```


Fractal Beauty in Nature

- Fractals are self-similar objects
- They appear in nature: rivers, coastlines, mountains, snow
- They are perfect for describing with recursion
- Same ideas apply: base case + recursive case
- Tip: look at $n=0$ and $n=1$ case; $n=\infty$ is often hard to decrypt
- How to write (pseudo)code for the Sierpinski Square:
- SierpinskiSquare ($\mathrm{L}, \mathrm{R}, \mathrm{U}, \mathrm{D}, \mathrm{n}$) given DrawRectangle ($\mathrm{L}, \mathrm{R}, \mathrm{U}, \mathrm{D}$) and OneThird (from,to)

Sierpinski Square

```
SierpinskiSquare(I,R,U,D,n) {
    if(n == 0) {
    DrawRectangle(I , R , U , D)
    } else { // We shorten OneThird to OT here...
    SierpinskiSquare(L,OT (L,R) ,U,OT (U,D) ,n-1) // NW
    SierpinskiSquare(OT(R,L) ,R,U,OT(U,D) ,n-1) // NE
    SierpinskiSquare (OT (L , R) ,OT (R,L) ,OT (U , D) ,OT (D , U) , n-1)
    SierpinskiSquare(L,OT (L,R) ,OT (D,U) ,D,n-1) // SW
    SierpinskiSquare(OT (R,L) ,R,OT(D,U) ,D,n-1) // SE
    }
}
- This is procedural recursion -- purpose is side-effect, not return value
- Sometimes we want a side-effect AND a return value...
```


Conclusion

- Many flavors, patterns
- Functional
- Procedural
- Inductive definitions lead naturally to recursion
- Recursion simpler code
- Fractals scream for it
- Thinking recursively
- Breaking problem down by trusting recursion, building off of that

