

CS39N The Beauty and Joy of Computing

Lecture #11 Recursion III

UC Berkeley Computer Science Lecturer SOE Dan Garcia

2009-11-09

BATTERY-FREE IMPLANTABLE SENSOR

It has been a challenge to power electronic components implanted within a body. Researchers at UW have developed a new chip that needs less power, and can be powered from outside the body (1 meter away)

technologyreview.com/computing/23878

Lecture Overview

- Local vs Global drawing
- Example: Twig
- Example: C-Curve
- Lindenmayer (L) systems
 Fibonacci & the golden mean
- Panspermia
- Summary

Gary William Flake

The Computational Beauty of Nature

Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation

Local vs Global Drawing

(394,27) pointing 48°

Goal: Draw a 100-length "+" from point (394,27) at 48°

- Local (turtle) Drawing
 - Concept of pen, sprite facing some direction
 - State! (where sprite ends)
 - Specify via local coords
 - Example
 - Move turtle to (394,27)
 - Face 48°
 - Pen down
 - Move 100
 - Pen up
 - Move -50
 - Turn right 90°
 - Move -50
 - Pen down

- imagine program share
 - **Scratch**

- **Global (god) Drawing**
 - No pen, just geometric primitives (DrawLine etc)
 - Stateless
 - Specify via global coords
 - Example
 - SW corner = (394,27)
 - Calculate NE corner
 - How? Simple trig, function of (394,27), 100, 48°
 - DrawLine (SW,NE)
 - Calculate NW corner
 - Calculate SE corner
 - DrawLine (NW,SE)

All About LOGO- commence How It Was Invented and How It Works

MINDSTORMS

WITH AN INTRODUCTION BY JOHN SCULLEY AND A NEW PREFACE BY THE AUTHOR SEYMOUR PAPERT

"Turtle"

Graphics

invented by

Papert

Children, Computers, and Powerful Ideas

UC Berkeley CS39N "The Beauty and Joy of Computing" : Recursion III (3)

Example: Twig

Want to draw a twig

- Where does sprite end?
- Could add randomness
- Lots of variations
 - # branches
 - Angle

Draw fractal twig size size level level pen down move size / 2 steps pen up if not level = 0 turn 1 20 degrees Draw fractal twig size size / 2 level level - 1 turn 40 degrees Draw fractal twig size size / 2 level level - 1

Two copies of last recursion level rotated 20°

UC Berkeley CS39N "The Beauty and Joy of Computing" : Recursion III (4)

turn 👌 20 degrees

size / 2 steps

move 0 -

Example: C-curve, Dragon curve

C-curve

- break a straight line up to form 90° angle
- Left out, Right out

Dragon curve

- break a straight line up to form 90° angle
- Left out, Right in

Example: Peano Curve

Simple rewrite rule

 Replace every straight line w/9 smaller lines, each a third the size (like an 8 with side lines)

• As $n \rightarrow \infty$, notice...

- Space-filling!
- Converging shape?

en.wikipedia.org/wiki/L-system

Lindenmayer (L) systems

- Rewriting system for
 - Modeling plant growth
 - Generating fractals, languages, ...

Basics

- Variables (replaced each level)
- Constants (not replaced)
- Start (i.e., base case)
- Rewrite rules (Recursive case)

aka, Fibonacci

TIBONACCI

and the

GOLDEN MEAN

Example: Fibonacci

Variables: A B

Start: A

```
a Rules: (A \rightarrow B, B \rightarrow AB)

n = 0 : A (1)

n = 1 : B (1)

n = 2 : AB (2)

n = 3 : BAB (3)

n = 4 : ABBAB (5)

n = 5 : BABABBAB (8)
```

- $\mathbf{h} = \mathbf{6}$: ABBABBABABBAB (13)
- n = 7 : Bababbababbabbabbabbab (21)

- Example: Dragon Curve
 - Variables : X Y
 - Constants : F + -
 - Start: FX
 - Rules (angle : 90°)
 - $(X \rightarrow X+YF)$
 - $(Y \rightarrow FX-Y)$
 - F means "draw forward"
 - means "turn left 90°"
 - + means "turn right 90°".
 - X and Y do not correspond to any drawing action and are only used to control the evolution of the curve

en.wikipedia.org/wiki/L-system

Panspermia

panspermia lpan^lspərmēəl

- the theory that life on the earth originated from microorganisms or chemical precursors of life present in outer space and able to initiate life on reaching a suitable environment
- Also, 1990 film by Karl Sims (famous computer graphics research and artist)
 - "Attempts were made to bring together several concepts: chaos, complexity, evolution, self propagating entities, and the nature of life itself."

Scenes from Panspermia

L-systems plant growth

Summary

- Fractals can model coastlines, clouds, plants, trees, natural growth
 Fibonacci 1st to see this
- When authoring fractals, make sure you're clear when pen goes up/down and where begins/ends
 - Scratch has Turtle graphics
- Infinite recursion = fun

