

UC Berkeley Computer Science

Lecturer SOE
Dan Garcia

IBM SIMULATES CAT BRAIN

IBM has built a computer with 147,456 processors and 144 terabytes of memory that simulates a cat's cerebral cortex. It runs $1 / 100 x$ the speed of an actual cat's brain. They want to see how "thoughts are formed and how the The Beauty and Joy of Computing

Lecture \#14 Future of Computing

2009-11-23 neurons and synapses work together". In 10 years they'll be able to simulate human brain.

Lecture Overview

- Where will today's computers go?
- 5 parts of a computer
- Moore's Law
- Technology growth
- Quantum Computing
- DNA Computing
- Biological Machines
- Smart Grid + Energy

5 Components of any Computer

Moore's Law

Predicts: $2 \times$ Transistors / chip every 2 years

The GPU
movement means now we can get 1 Terafiop on a PC!! (ESC 1000)

$10,000,000-$
$1,000,000$
100,000
10,000
2,300

Computer Technology - Growth!

- Processor
- Speed 2x / 2 years (since '71)
- 100X performance last decade
- When you graduate: $4 \mathrm{GHz}, 32$ Cores
- Memory (DRAM)
- Capacity: $2 x / 2$ years (since '96)
- $64 x$ size last decade.
- When you graduate: 128 GibiBytes
- Disk
- Capacity: $2 \times / 1$ year (since '97)
- 250X size last decade.
- When you graduate:

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

- Kid meets giant Texas people exercising zen-like yoga. - Rolf O
- Kind men give ten percent extra, zestfully, youthfully. - Hava E
- Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. - Gary M
- Kindness means giving, teaching, permeating excess zeal yourself. - Hava E
- Killing messengers gives terrible people exactly zero, yo
- Kindergarten means giving teachers perfect examples (of) zeal (\&) youth
- Kissing mediocre girls/guys teaches people (to) expect zero (from) you
- Kinky Mean Girls Teach Penis-Extending Zen Yoga
- Kissing Mel Gibson, Teddy Pendergrass exclaimed: "Zesty, yo!" - Dan G
- Kissing me gives ten percent extra zeal \& youth! - Dan G (borrowing parts)

Quantum Computing (1)

- Proposed computing device using quantum mechanics
- This field in its infancy...
- Normally: bits, which are either 0 or 1
- Quantum: qubits, either 0, 1 or "quantum superposition" of these
- This is the key idea
- If you have 2 bits, they're in exactly one of these:
- $00,01,10$ or 11
- If you have 2 qubits, they're in ALL these states with varying probabilities

A Bloch sphere is the geometric representation of 1 qubit

Quantum Computing (2)

- Imagine a problem with these four properties:
- The only way to solve it is to guess answers repeatedly and check them,
- There are n possible answers to check,
- Every possible answer takes the same amount of time to check, and
- There are no clues about which answers might be better: generating possibilities randomly is just as good as checking them in some special order.
- ...like trying to crack a password from an encrypted file
- A normal computer
- would take (in the worst case) n steps
- A quantum computer
- can solve the problem in steps proportional to \sqrt{n}
- Why does this matter?

Quantum Computing (3)

- Say the password is exactly 72 bits (0/1)
- That's 2^{72} possibilities
- Let's say our Mac lab attacked the problem
- 30 machines/lab * 8
cores/machine * 3 GHz (say 3 billion checks per second/core)
$=720,000,000,000$ checks/sec/lab
= 720 Gchecks/sec/lab
- Regular computers
- 2^{72} checks needed / 720 Gchecks/sec/lab
≈ 6.6 billion sec/lab
~ 208 years/lab
- 72-qubit quantum computers in time α to
$\sqrt{2^{72}}=2^{36}$
- 2^{36} checks needed / 720

Gchecks/sec/lab
~ $0.1 \mathrm{sec} / \mathrm{lab}$

DNA Computing

- Proposed computing device using DNA to do the work
- Take advantage of the different molecules of DNA to try many possibilities at once
- Ala parallel computing
- Also in its infancy
- In 2004, researchers claimed they built one

- Paper in "Nature"
en.wikipedia.org/wiki/DNA_computing
www.eecs .berkeley.edu/~maharbiz/Cyborg.html
Biological Machines
- Michel Maharbiz and his team at Cal have wired insects (here a giant flower beette) and can control flight
- Implated as Pupa
- Vision
- Imagine devices that can collect, manipulate, store and act on info from environment

Smart Grid + Energy

- Arguably the most important issue facing us today is climate change
- Computing can help
- Old: generators "broadcast" power
- New: "peer-to-peer", with optimal routing
- From: ability (to power) To according to need
- Energy
- Computing helps with climate modeling and simulation
- "Motes", or "Smart dust" are small, networked computing measurement devices
- E.g., could sense no motion + turn lights off

Summary

- What a wonderful time we live in; we're far from done
- What about privacy?
- Find out the problem you want to solve
- Computing can and will help us solve it
- We probably can’t even imagine future software + hardware breakthroughs

