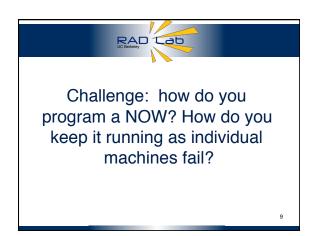
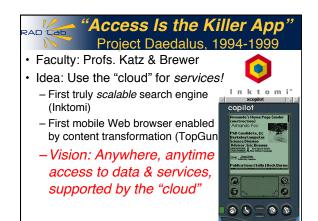
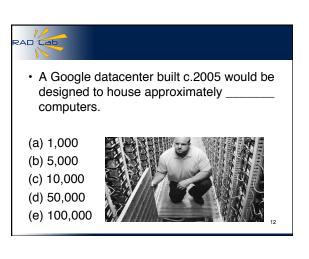
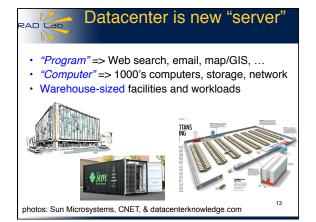


AD				acenter 8 & today	
Sun E-10000 "supermini" c.1996					
E10000, 1996	64 x 250MHz	64 GB	20 TB		
PC, 1996	1 x 250 MHz	32 MB	4 GB		
Ratio	64:1	2000:1	5000:1		
Datacenter computer, 2010	8 x 1 GHz	16 GB	2 TB		
PC, 2010	2 x 3 GHz	4 GB	0.5 TB		
Ratio	< 2:1	4:1	4:1		
				3	

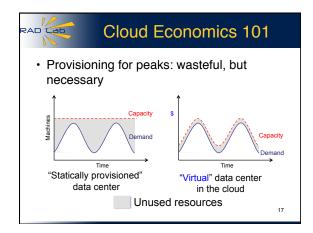


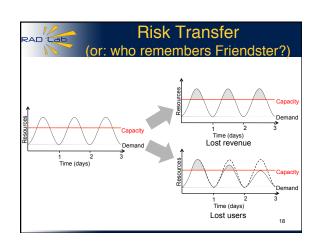






RAD	Trivia Fact	
	Web browser running on a ce was developed by:	
(a) Apple		
(b) Stanford		
(c) Berkeley		
(d) Nokia		
(e) Motorola		
		10




Amazon Elastic Compute Cloud (EC2)

- Amazon Elastic Compute Cloud (EC2
 "Compute unit" rental: \$0.02-0.68/hr.
 - $-1 \text{ CU} \approx -1 \text{ GHz} \times 86 \text{ core}$
 - Virtual machine technology used to "slice up"
- No up-front cost, no contract, no minimum
- Billing rounded to nearest hour
 pay-as-you-go storage also available
- "Computing as utility"—MULTICS, c.1969
- See *abovetheclouds.cs.berkeley.edu*

What's new: risk transfer & cost associativity

Cost Associativity

- 1,000 CPUs for 1 hour same price as 1 CPU for 1,000 hours
- Washington Post converted Hillary Clinton's travel documents to post on WWW
 - Conversion time: <1 day after released
 Cost: less than \$200
- RAD Lab graduate students demonstrate improved MapReduce scheduling—on 1,000 servers

19

Challenge: Cloud Programming

- Challenge: exposing parallelism
 Programmers must (re)write problems to expose this parallelism, if it's there to be found
- · Challenge: operations
 - Failures a constant fact when use 10,000 machines
 - Automating the process of grabbing/releasing machines

Rising to the challenge

Programming

RADICAD

- BOOM (Berkeley Orders of Magnitude) simplifies creating cloud-scale storage services (Hellerstein et al.)
- SEJITS (Selective Embedded Just-in-Time Specialization) lets same Python programs exploit cloud-scale or CPU-level parallelism (Fox et al.)

Operations

RAD LOD

 RAD Lab expertise in using machine learning to auto-scale servers and storage in cloud 21

Cloud in Education

- Berkeley research culture: integrate leading research into teaching at all levels
- CS61C Great Ideas in Computer Architecture (reinvented Fall 2010): 190 students
- CS169 Software Engineering for SaaS (in its 4th iteration): 50+50+50+70 students
- CS162 Operating Systems: 70 students
- (New course) Intro. Data Science (Spring 2010): 30
- (New course) Programming Cloud Storage with BOOM
 (Fall 2011)
- CS260 Adv. topics in HCI: 20 students
- · CS288 Natural language processing: 20 students

Cloud computing in courses

- New undergraduate teaching opportunities
 - SaaS: make a database fall over—would need 200 servers for ~20 project teams
 deploy projects publicly, many continue after
 - course
- Better use of resources
- Heavy usage right before lab deadlines
- Better hardware
 - Better machines than students' own laptops
 - Better machines than most UCB labs

Going back to NOW...

 2000: using mediumsized clusters for Internet services
 => several PhD's

- 2010: CS169 students do it in 6-8 weeks and deploy on cloud computing – *Everything* delivered as SaaS now...
- 2020: ?

RADICAD

Summary

- Cloud computing *democratizes access* to large-scale computing resources
- Pay-as-you-go => low risk, low entry cost
- Accelerates "SaaS-ification"
 - Economic benefits of delivering software as a a service now available to anyone
- Allows students, academia to have even greater impact on industry
- Open up research/innovation opportunities

27

Relevant Topics?

- SaaS architecture & cloud (CS 169)
- Big data (CS 194 Intro to Data Science this semester)
- Machine learning (CS 188)

RAD COD

- Human-computer interaction (CS 160)
- *Non-goal:* "iPhone programming", "Android programming", etc. (why?)

28

