
 
CS10 : The Beauty and

Joy of Computing

Lecture #5
Programming Paradigms

2012-06-25

TURING TURNS 100

If you visited google.com on
Saturday, you saw a tribute to
this founding father of computer
science who broke the German
Enigma code during WW2.

en.wikipedia.org/wiki/Alan_Turing

UC Berkeley EECS
Summer Instructor

Ben Chun

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (2)

Chun, Summer 2012

§  What paradigm is that language?
ú  Most are hybrids!

§  Four Primary Paradigms
ú  Functional
ú  Imperative
ú  Object-Oriented

   OOP Example: Skecthpad

ú  Declarative

§  Turing Completeness
§  Summary

Programming Paradigms Overview

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (3)

Chun, Summer 2012

§  “The concepts and
abstractions used to
represent the elements of
a program (e.g., objects,
functions, variables,
constraints, etc.) and the
steps that compose a
computation (assignation,
evaluation, continuations,
data flows, etc.).”

§  Or, a way to
classify the style
of programming.

What are Programming Paradigms?
en.wikipedia.org/wiki/Programming_paradigm

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (4)

Chun, Summer 2012

a)  1 (functional)
b)  1 (not functional)
c)  2
d)  3
e)  4

Of 4 paradigms, how many can BYOB be?
byob.berkeley.edu"

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (5)

Chun, Summer 2012

§  This makes it hard to
teach paradigms, because
most languages can
express several
ú  Called “Multi-paradigm”

languages
ú  Scratch & BYOB too!

§  It’s like giving someone a
juice drink (with many
fruits in it) and asking to
taste just one fruit!

Most Languages Are Hybrids

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (6)

Chun, Summer 2012

§  Computation is the
evaluation of functions
ú  Plugging pipes together
ú  Each pipe, or function, has

exactly 1 output
ú  Functions can be input!

§  Features
ú  No state

   E.g., variable assignments

ú  No mutation
   E.g., changing variable values

ú  No side effects

§  Examples (not all pure)
ú  Scheme, Scratch, BYOB

Functional Programming (review)
en.wikipedia.org/wiki/Functional_programming

f(x)=(x+3)* x

+
x 3

*

x

f
x"

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (7)

Chun, Summer 2012

§  “Sequential” Programming
§  Computation a series of steps

ú  Assignment allowed
   Setting variables

ú  Mutation allowed
   Changing variables

§  Like writing a recipe
ú  Procedure f(x):
ú  ans = x
ú  ans = ans
ú  ans = (x+3) * ans
ú  return ans

§  Examples (not all pure)
ú  Pascal, C

Imperative Programming
en.wikipedia.org/wiki/Imperative_programming

f(x)=(x+3)* x

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (8)

Chun, Summer 2012

§  Objects are data structures
ú  With methods you ask of them

   These are the behaviors

ú  With local state, to store info
   These are the attributes

§  Classes & Instances
ú  Instance an example of class
ú  E.g., Fluffy is instance of Dog

§  Inheritance saves code
ú  Hierarchical classes
ú  e.g., singer is a special case of

musician, musician is a
special case of person

§  Examples (not all pure)
ú  Java, C++

Object-Oriented Programming (OOP)
en.wikipedia.org/wiki/Object-oriented_programming

www3.ntu.edu.sg/home/ehchua/
programming/java/images/OOP-Objects.gif

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (9)

Chun, Summer 2012

§  Dr. Ivan Sutherland
ú  “Father of Computer

Graphics”
ú  1988 Turing Award (“Nobel

prize” for CS)
ú  Wrote Sketchpad for his

foundational 1963 thesis

§  The most impressive
software ever written

§  It was the first:
ú  Object-oriented system
ú  Graphical user interface
ú  non-procedural language

OOP Example : SketchPad
en.wikipedia.org/wiki/Sketchpad

Spent the past
few years doing

research @ Berkeley
in EECS dept!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (10)

Chun, Summer 2012

OOP in BYOB

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (11)

Chun, Summer 2012

§  Express what
computation desired
without specifying
how it carries it out
ú  Often a series of

assertions and queries
ú  Feels like magic!

§  Sub-categories
ú  Logic
ú  Constraint

   We saw in Sketchpad!

§  Example: Prolog

Declarative Programming
en.wikipedia.org/wiki/Declarative_programming

Anders Hejlsberg
“The Future of C#” @ PDC2008

channel9.msdn.com/pdc2008/TL16/

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (12)

Chun, Summer 2012

§  Five schoolgirls sat for an
examination. Their
parents – so they thought
– showed an undue
degree of interest in the
result. They therefore
agreed that, in writing
home about the
examination, each girl
should make one true
statement and one
untrue one. The following
are the relevant passages
from their letters:

§  Betty
ú  Kitty was 2nd
ú  I was 3rd

§  Ethel
ú  I was on top
ú  Joan was 2nd

§  Joan
ú  I was 3rd
ú  Ethel was last

§  Kitty
ú  I came out 2nd
ú  Mary was only 4th

§  Mary
ú  I was 4th
ú  Betty was 1st

Declarative Programming Example
mitpress.mit.edu/sicp/full-text/sicp/book/node90.html

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (13)

Chun, Summer 2012

a)  Functional
b)  Imperative
c)  OOP
d)  Declarative
e)  All equally powerful

Of 4 paradigms, what’s the most powerful?

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (14)

Chun, Summer 2012

§  A Turing Machine has an infinite
tape of 1s and 0s and instructions
that say whether to move the
tape left, right, read, or write it
ú  Can simulate any computer algorithm!

§  A Universal Turing Machine is one
that can simulate a Turing
machine on any input

§  A language is considered Turing
Complete if it can simulate a
Universal Turing Machine
ú  A way to decide that one programming

language or paradigm is just as
powerful as another

Turing Completeness
en.wikipedia.org/wiki/Turing_completeness

ironphoenix.org/tril/tm/

Turing Machine by Tom Dunne

Xkcd comic “Candy Button Paper”

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (15)

Chun, Summer 2012

§  Functional
ú  Evaluate an expression

and use the resulting
value for something

§  Imperative
ú  First do this

and next do that

§  Object-oriented
ú  Send messages

between objects to
simulate the temporal
evolution of a set of real
world phenomena

§  Declarative
ú  Answer a question via

search for a solution

Ways to Remember the Paradigms

www.cs.aau.dk/~normark/prog3-03/html/notes/
paradigms_themes-paradigm-overview-section.html

en.wikipedia.org/wiki/Programming_paradigm

UC Berkeley CS10 “The Beauty and Joy of Computing” : Programming Paradigms (16)

Chun, Summer 2012

§  Each paradigm has its
unique benefits
ú  If a language is Turing

complete, it is equally powerful
ú  Paradigms vary in efficiency,

scalability, overhead, fun,
“how” vs “what” to specify, etc.

§  Modern languages usually
take the best from all
ú  E.g., Scratch

   Can be functional
   Can be imperative
   Can be object-oriented
   Can be declarative

Summary

