
 
CS10

The Beauty and Joy of
Computing

Lecture #7

Algorithmic Complexity

2012-06-27
SEVEN MINUTES OF TERROR
The Curiosity Mars rover will use a “sky
crane” system to slow down after it
enters the atmosphere – and software
will be flying. It takes 14 minutes for a
radio signal to travel from Mars to
Earth, but the whole landing will be
over in just 7 minutes.

http://www.youtube.com/watch?v=pzqdoXwLBT8

UC Berkeley EECS
Summer Instructor

Ben Chun

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (2)

Chun, Summer 2012

§  A function has inputs
& outputs
ú  Possibly no inputs
ú  Must have outputs (or

else the block is a
command, probably
with side effects)

§  The contract
describing what that
block does is called a
specification or spec

Functional Abstraction (review)

F

x

F(x)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (3)

Chun, Summer 2012

§  Typically they all have
ú  NAME!
ú  INPUT(s)!

   (and types, if appropriate)
   Requirements

ú  OUTPUT (or NONE)!
ú  (SIDE-EFFECTS)!
ú  EXAMPLES!

§  Example
ú  NAME : Double
ú  INPUT : n (a number)
ú  OUTPUT: n + n

What IS in a spec?

Double

n

Double(n)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (4)

Chun, Summer 2012

§  How!
ú  That’s the beauty of a

functional abstraction; it
doesn’t say how it will
do its job.

§  Example: Double
ú  Could be n * 2
ú  Could be n + n
ú  Could be n+1 (n times)

   if n is a positive integer

§  This gives great
freedom to author!
ú  You choose Algorithm(s)!

What IS NOT in a spec?

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (5)

Chun, Summer 2012

What do YOU think?
Which factor below is the most important in

choosing the algorithm to use?

A.  Simplest?
B.  Easiest to implement?
C.  Takes less time?
D.  Uses up less space (memory)?
E.  Gives a more precise answer?

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

5

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (6)

Chun, Summer 2012

§  This book launched a
generation of CS
students into Algorithm
Analysis
ú  It’s on everyone’s shelf
ú  It might be hard to grok

now, but if you go on in
CS, remember it & own it!

ú  Get the most recent version

Reference text

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (7)

Chun, Summer 2012

§  An algorithm is correct if,
for every input, it reports
the correct output and
doesn’t run forever or
cause an error.
ú  Incorrect algorithms may

run forever, or may crash, or
may not return the correct
answer.
   They could still be useful!
   Consider an approximation…

ú  For now, we’ll only consider
correct algorithms

Algorithm analysis : the basics

Algorithm for managing Vitamin D sterols based on
serum calcium levels.

www.kidney.org/professionals/kdoqi/guidelines_bone/guide8b.htm

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (8)

Chun, Summer 2012

§  One commonly used
criterion in making a
decision is running time
ú  How long does the

algorithm take to run and
finish its task?

§  How do we measure it?

Algorithm analysis : running time

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

8

08:23:12!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (9)

Chun, Summer 2012

§  Time w/stopwatch, but…
ú  Different computers may

have different runtimes. L
ú  Same computer may have

different runtime on the
same input. L

ú  Need to implement the
algorithm first to run it. L

§  Solution: Count the
number of “steps”
involved, not time!
ú  Each operation = 1 step
ú  When we say “running time”

we mean number of steps,
not time on the clock!

Runtime analysis problem & solution

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

9

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (10)

Chun, Summer 2012

§  Definition
ú  Input size: the # of

things in the input.
ú  E.g., # of things in a list
ú  Running time as a

function of input size
ú  Measures efficiency

§  Important!
ú  In CS10 we won’t care

about the efficiency of
your solutions!

ú  …in CS61B we will

CS10

CS61A

CS61B

CS61C

Runtime analysis : input size & efficiency

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

1
0

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (11)

Chun, Summer 2012

§  Could use avg case
ú  Average running time over

a vast # of inputs

§  Instead: use worst case
ú  Consider running time as

input grows

§  Why?
ú  Nice to know most time

we’d ever spend
ú  Worst case happens often
ú  Avg is often ~ worst

Runtime analysis : worst or avg case?

U
C
B
e
rk
el
e
y
C
S
1
0
"
T
h
e
B
e
a
ut
y
a
n
d
J
o
y
of
C
o
m
p
ut
in
g
"
:
A
lg
o
rit
h
m
C
o
m
pl
e
xi
ty"

1
1

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (12)

Chun, Summer 2012

§  Instead of an exact
number of operations
we’ll use abstraction
ú  Want order of growth, or

dominant term

§  In CS10 we’ll consider
ú  Constant
ú  Logarithmic
ú  Linear
ú  Quadratic
ú  Cubic
ú  Exponential

§  E.g. 10 n2 + 4 log n + n
ú  …is quadratic

Runtime analysis: Final abstraction

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

Quadratic Cubic Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (13)

Chun, Summer 2012

§  Input
ú  Unsorted list of students L
ú  Particular student S

§  Output
ú  True if S is in L, else False

§  Pseudocode Algorithm
ú  Go through one by one,

checking for match.
ú  If match, true
ú  If exhausted L and didn’t

find S, false

Example: Finding a student (by ID)

§  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (14)

Chun, Summer 2012

§  Input
ú  Sorted list of students L
ú  Particular student S

§  Output : same
§  Pseudocode Algorithm

ú  Start in middle
ú  If match, report true
ú  Else throw away half of L

and check again in the
middle of remaining part
of L

ú  If nobody left, report false

Example: Finding a student (by ID)

§  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (15)

Chun, Summer 2012

§  Same problem, with a
new twist

§  What if L were given to
you in advance and
you had infinite
storage?

§  What’s the best you
could do?

Example: Finding a student (by ID)

§  Worst-case running
time as function of
the size of L?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (16)

Chun, Summer 2012

§  Input
ú  Unsorted list L (of size n) of

birthdays of team

§  Output
ú  True if any two people

shared birthday, else False

§  Think about the
algorithm you would
use and how many
steps it will take

Example: Shared birthday?

§  Worst-case running
time as function of n?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (17)

Chun, Summer 2012

§  Input:
ú  Unsorted list L (of size n) of

people

§  Output
ú  All the subsets

§  E.g., for 3 people (a,b,c):
ú  1x empty: { }
ú  3x 1-person: {a, b, c}
ú  3x 2-person: {ab, bc, ac}
ú  1x 3-person: {abc}

Example: Power set

§  Worst-case running
time as function of n?
1.  Constant
2.  Logarithmic
3.  Linear
4.  Quadratic
5.  Exponential

UC Berkeley CS10 “The Beauty and Joy of Computing” : Algorithmic Complexity (18)

Chun, Summer 2012

§  When choosing algorithm,
could optimize for
ú  Simplest
ú  Easiest to implement?
ú  Most efficient
ú  Uses up least resources
ú  Gives most precision
ú  …

§  In CS10 we’ll consider
ú  Constant
ú  Logarithmic
ú  Linear
ú  Quadratic
ú  Cubic
ú  Exponential

Summary

How does the goalie choose how to block the ball?

