

## Saving the World with Computing

#### Kathy Yelick

EECS Professor, U.C. Berkeley

Associate Laboratory Director for Computing Sciences and NERSC Director, Lawrence Berkeley National Laboratory





# Why are you Interested in Computer Science?

#### I want to:

- A. Build computer hardware and software
- B. Create new companies and industries
- C. Solve important problems facing the world
- D. Work on teams with other creative people
- E. All of the above

## Using Computers for Science and Engineering

Computers are used to understand things that are:

- too big
- too small
- too fast
- too slow
- too expensive or
- too dangerous

for experiments



Understanding the universe



Industrial products and processes



Proteins and diseases like Alzheimer's



Energy-efficient combustion engines

## Simulation: The "Third Pillar" of Science



# Addressing Challenges using Computing

- Two of the most significant challenges
  - Our changing world: understanding climate change, alternative energy sources, mitigation techniques, etc.
  - Health and medicine: understanding the human body, development of treatments, and disease prevention

#### Carbon Cycle 2.0 Initiative at Berkeley Lab



#### **Computing for Carbon Cycle 2.0**



#### 1979 Hurricane Season

Movie from Michael Wehner and Prabhat at LBNL



#### **Data Structures for Simulations**



#### **Climate Change Requires Lots of Data**

"validate" that the computer models are working as expected

Simulation of 1938 hurricane hitting New York



### Mitigating Global Climate Change

Can global warming impacts be diminished if greenhouse gases are cut?

Average surface air temperatures rise by >3°C if emissions increase at current rate

Temperatures rise by <2°C across nearly all populated areas if emissions are cut by 70%



## Simulations Aid in the Energy Efficient Devices

- Combustion simulations improve future designs
  - Model fluid flow, burning and chemistry
  - Uses advanced math algorithms
  - Petascale (10<sup>15</sup> ops/sec) systems today

Simulations reveal features not visible in lab experiments







Energy efficient, low emissions technology licensed by industry

 Need exascale (10<sup>18</sup> ops/sec) computing to design for alternative fuels, new devices

#### Simulating New Kinds of Batteries

## Sunlight-To-Thermal Energy Storage



Grossman Group, MIT 2010

MITEI

## Simulations to Get Rid of CO<sub>2</sub>

 Carbon sequestration: "The process of removing carbon from the atmosphere or from flue gasses and depositing it in a



## Towards a Digital Human: The 20+ Year Vision

- Imagine a "digital body double"
  - -3D image-based medical record
  - Includes diagnostic, pathologic, and other information
- Used for:
  - Diagnosis
  - Less invasive surgery-by-robot
  - Experimental treatments

### **Digital Human Today: Imaging**



- The Visible Human Project
  - 18,000 digitized sections of the body
    - Male: 1mm sections, released in 1994
    - Female: .33mm sections, released in 1995
  - Goals
    - study of human anatomy
    - testing medical imaging algorithms
  - Current applications:
    - educational, diagnostic, treatment planning, virtual reality, artistic, mathematical and industrial
    - Used by > 1,400 licensees in 42 countries



### **Experimental Data: Visible Human**

The National Library of Medicine's

Visible Human Project (TM)

Human-Computer Interaction Lab Univ. of Maryland at College Park

#### **Heart Simulation**

Movie from Boyce Griffith's PhD thesis, NYU



#### **Heart Simulation**

Movie from Charles Peskin and Dave McQueen at NYU



**Organ Simulation** 

Brain

UCSD (Ellisman),

IBM

Lung transport Vanderbilt

Lung flow
U. lowa (Lin &
Hoffman)

Kidney mesh generation

Dartmouth

Skeletal mesh generation



Cardiac flow NYU, UCB, UCD...

Cardiac cells/muscles SDSC, Auckland, UW, Utah

Electrocardiography *Johns Hopkins,...* 

Just a few of the efforts at understanding and simulating parts of the human body



#### **Screening Proteins**

Structure

Dynameomics: Protein Folding

Large number of simulations covering a variety of

related proteins,...



#### **Dynameomics Database**

Improve understanding of disease and drug design, e.g., 11,000 protein unfolding simulations stored in a public database. [V. Daggett, UW]

## Big D and Big C: Computing on Big Data to help Cure Cancer



**ESSAY** 

### Computer Scientists May Have What It Takes to Help Cure Cancer

By DAVID PATTERSON Published: December 5, 2011

The war against cancer is increasingly moving into cyberspace. Computer scientists may have the best skills to fight cancer in the next decade — and they should be signing up in droves.

**Enlarge This Image** 



**David Patterson** 

One reason to enlist: Cancer is so pervasive. In his <u>Pulitzer Prize</u>-winning book, "<u>The Emperor of All Maladies</u>," the oncologist Siddhartha Mukherjee writes that cancer is a disease of frightening

fractions: One-fourth of deaths in the United States are caused by cancer; one-third of women will face cancer in their lifetimes; and so will half of men.

As he wrote, "The question is not if we will get this immortal disease, but when."



#### Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because programming is fun and there are plenty of new problems to solve

### **Trends in Computer Science**

Which of the following are true?

- A. Moore's Law says that processor performance doubles every 18 months
- B. Moore's Law has ended
- C. Current computers are fast enough for most applications
- D. None of the above
- E. All of the above

### **Black Swans of Computing**







2012 Computing with 1992 Technology



### **Technology for Innovation**

Which of the following are true?

- A. Google developed its own programming language to hide machine failures
- B. iPhones are programmed using Java
- C. Web search algorithms use only integer arithmetic, not floating point (real) numbers
- D. Scientific computing is done mostly using "Vector Supercomputers"
- E. All of the above

# Units of Measure in High Performance Computing (HPC)

- High Performance Computing (HPC) units are:
  - Flops: floating point operations

1988

1998

2008

- Flops/s: floating point operations per second
- Bytes: size of data (a double precision floating point number is 8)
- Typical sizes are millions, billions, trillions...

| Kilo  | Kflop/s = $10^3$ flop/sec    | Kbyte = $2^{10}$ = 1024 $\sim$ 1,000 bytes                           |
|-------|------------------------------|----------------------------------------------------------------------|
| Mega  | Mflop/s = $10^6$ flop/sec    | Mbyte = $2^{20}$ = 1048576 $\sim$ 10 <sup>6</sup> bytes              |
| Giga  | Gflop/s = $10^9$ flop/sec    | <b>Gbyte = 2</b> <sup>30</sup> ~ <b>10</b> <sup>9</sup> <b>bytes</b> |
| Tera  | Tflop/s = $10^{12}$ flop/sec | Tbyte = 2 <sup>40</sup> ~ 10 <sup>12</sup> bytes                     |
| Peta  | Pflop/s = $10^{15}$ flop/sec | Pbyte = 2 <sup>50</sup> ~ 10 <sup>15</sup> bytes                     |
| Exa   | Eflop/s = $10^{18}$ flop/sec | Ebyte = 2 <sup>60</sup> ~ 10 <sup>18</sup> bytes                     |
| Zetta | Zflop/s = $10^{21}$ flop/sec | <b>Zbyte = 2</b> <sup>70</sup> ~ <b>10</b> <sup>21</sup> bytes       |
| Yotta | Yflop/s = $10^{24}$ flop/sec | Ybyte = 2 <sup>80</sup> ~ 10 <sup>24</sup> bytes                     |

### **High End Computing Revolutions**



## The Fastest Computers (for Science) Have Been Parallel for a Long Time

- Fastest Computers in the world: top500.org
- Our Hopper Computer has 150,000 cores and > 1 Petaflop (10<sup>15</sup> math operations / second)

 Programming and "debugging" are challenging Supercomputing is done by parallel programming

### **Energy Challenge for Computing**

#### At ~\$1M per MW, energy costs are substantial

An exaflop in 2020 would use ~200 MW with "usual" scaling



Google Details, and Defends, Its Use of Electricity



260 million watts — about a quarter of the output of a nuclear

power plant.

**NSA Maxes Out Baltimore Power Grid** 

August 6th, 2006: Rich Miller

The National Security Agency's technology infrastructure at Fort Meade, Md. has <u>maxed</u> <u>out the electric capacity</u> of the Baltimore area power grid, creating a major challenge for the agency, sources told the Baltimore Sun. An excerpt:

The worldwide data center power in was about 26 gigawatts in 2010 (up from 17 in 2005)

# New Processor Designs are Needed to Save Energy



Cell phone processor (0.1 Watt, 4 Gflop/s)

Server processor (100 Watts, 50 Gflop/s)



- The server is about 10x faster than the cell phone processor
- But uses 1000x more power  $\rightarrow$  cell phone is 100x more efficient
- Why: Power is proportional to V²f, and increasing frequency (f)
  also requires increase voltage V → cube
- Next computers built from graphics, games, cell phones,...

#### All Computers are Parallel Computers

- Power density limit single processor clock speeds
- Cores per chip is growing
- How to program them?
  - Parallel "loops"
  - Parallel map
  - Parallel divide-andconquer
  - (Message passing)



## Power Limits Computing Performance Growth



Processor industry was running at "maneuvering speed"

- David Liddle



#### Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career

#### **Computation in Music**

(David Wessel)

## Musicians have an insatiable appetite for computation

- More channels, instruments, more processing, more interaction!
- Latency must be low (5 ms)
- Must be reliable (No clicks)

#### Music Enhancer

- Enhanced sound delivery systems for home sound systems using large microphone and speaker arrays
- Laptop/Handheld recreate 3D sound over ear buds

#### Hearing Augmenter

Handheld as accelerator for hearing aid



Berkeley Center for New Music and Audio Technology (CNMAT) created a compact loudspeaker array: 10-inch-diameter icosahedron incorporating 120 tweeters.

#### Real-Time Deformation and Fracture in a Game Environment

Eric Parker
Pixelux Entertainment

James O'Brien U.C. Berkeley

Video Edited by Sebastian Burke

From the proceedings of SCA 2009, New Orleans

#### **Writing Software**

Which of the following are true?

- A. Most computer software is written by brilliant hackers, working alone
- B. Parallel programming is a solved problem
- C. Speed of programming and speed of programs are the top goals in software
- D. Most software is rewritten from scratch every few years
- E. None of the above

#### **Computational Science is Necessarily Collaborative**



Internships Available: http://csee.lbl.gov/

#### Why Study Computer Science?

- 1) Because computers can help solve important problems
- 2) Because computers are fun to program
- 3) Because computers make a good career
- 4) Because you will get to work with lots of great people