
en.wikipedia.org/wiki/Intractability_(complexity) \#Intractability

Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
- E.g., $f(n)=2^{n}$
- as in the image to the right
- This also includes poly-time algorithm with a huge exponent - E.g. $f(n)=n^{10}$

Imagine a program that calculated something important at each of the bottom circles. This tree has height n but there are 2^{n} bottom circles!

- Only solve for small n

UC Berkeley Cs10 "The Beauty and Joy of Computing": Limits of Computability (5) Chun, Summer 2012
(c) $(1)(2)$

Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture, we've got several common orders of growth
- Constant
- Logarithmic
- Linear
- Quadratic
- Cubic
- Exponential
- Order of growth is polynomial in the size of the problem
- E.g.,
- Searching for an item in a collection
- Sorting a collection
- Finding if two numbers in a collection are same
- These problems are called being "in $\mathrm{P}^{\prime \prime}$ (for polynomial)

Solvable approximately, not optimally in reas time

Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help

Some not solvable!

