
 
CS10: The Beauty and

Joy of Computing

Lecture #22
Limits of Computing

2012-07-26

MOUNTAIN LION ON CAMPUS?

Warning sign posted at Stern Hall.
Also, Apple releases new
operating system.

http://www.dailycal.org/2012/07/25/mountain-lion-sighted-near-uc-berkeley-stern-
hall/

You’ll have the opportunity for extra credit on
your project! After you submit it, you can

make a ≤ 5min YouTube video.

UC Berkeley EECS
Summer Instructor

Ben Chun

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (2)

Chun, Summer 2012

  CS research areas:
  Artificial Intelligence
  Biosystems & Computational Biology
  Database Management Systems
  Graphics
  Human-Computer Interaction
  Networking
  Programming Systems
  Scientific Computing
  Security
  Systems
  Theory

  Complexity theory

  …

Computer Science … A UCB view
www.eecs.berkeley.edu/Research/Areas/

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (3)

Chun, Summer 2012

  Problems that…
  are tractable with efficient

solutions in reasonable time
  are intractable
  are solvable approximately,

not optimally
  have no known efficient

solution
  are not solvable

Let’s revisit algorithm complexity

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (4)

Chun, Summer 2012

  Recall our algorithm
complexity lecture,
we’ve got several
common orders of
growth
  Constant
  Logarithmic
  Linear
  Quadratic
  Cubic
  Exponential

  Order of growth is
polynomial in the size
of the problem

  E.g.,
  Searching for an item in

a collection
  Sorting a collection
  Finding if two numbers

in a collection are same

  These problems are
called being “in P”
(for polynomial)

Tractable with efficient sols in reas time
en.wikipedia.org/wiki/P_(complexity)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (5)

Chun, Summer 2012

  Problems that can be
solved, but not solved
fast enough

  This includes
exponential problems
  E.g., f(n) = 2n

  as in the image to the right

  This also includes
poly-time algorithm
with a huge exponent
  E.g, f(n) = n10

  Only solve for small n

Intractable problems
en.wikipedia.org/wiki/Intractability_(complexity)#Intractability

Imagine a program that calculated
something important at each of the

bottom circles. This tree has height n,
but there are 2n bottom circles!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (6)

Chun, Summer 2012

  A problem might have
an optimal solution
that cannot be solved
in reasonable time

  BUT if you don’t need
to know the perfect
solution, there might
exist algorithms
which could give
pretty good answers
in reasonable time

Solvable approximately, not optimally in reas time

Knapsack Problem
You have a backpack with a weight
limit (here 15kg), which boxes (with

weights and values) should be taken to
maximize value?

en.wikipedia.org/wiki/Knapsack_problem

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (7)

Chun, Summer 2012

Peer Instruction

What’s the most you
can put in your
knapsack?

a)  $10
b)  $15
c)  $33
d)  $36
e)  $40

Knapsack Problem
You have a backpack with a weight limit (here
15kg), which boxes (with weights and values)

should be taken to maximize value?
(any # of each box is available)

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (8)

Chun, Summer 2012

  Solving one of them
would solve an entire
class of them!
  We can transform one

to another, i.e., reduce
  A problem P is “hard”

for a class C if every
element of C can be
“reduced” to P

  If you’re “in NP” and
“NP-hard”, then
you’re “NP-complete”

  If you guess an

answer, can I verify it
in polynomial time?
  Called being “in NP”
  Non-deterministic (the

“guess” part) Polynomial

Have no known efficient solution
en.wikipedia.org/wiki/P_%3D_NP_problem

Subset Sum Problem
Are there a handful of these numbers
(at least 1) that add together to get 0?

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (9)

Chun, Summer 2012

  This is THE major
unsolved problem in
Computer Science!
  One of 7 “millennium

prizes” w/a $1M reward

  All it would take is
solving ONE problem in
the NP-complete set in
polynomial time!!
  Huge ramifications for

cryptography, others

If P ≠NP, then

  Other NP-Complete
  Traveling salesman who

needs most efficient
route to visit all cities
and return home

The fundamental question. Is P = NP?
en.wikipedia.org/wiki/P_%3D_NP_problem

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (10)

Chun, Summer 2012

xkcd.com/287

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (11)

Chun, Summer 2012

  Decision problems
answer YES or NO for
an infinite # of inputs
  E.g., is N prime?
  E.g., is sentence S

grammatically correct?

  An algorithm is a
solution if it correctly
answers YES/NO in a
finite amount of time

  A problem is decidable
if it has a solution

Problems NOT solvable

Alan Turing
asked, “Are all problems decidable?”

(People believed yes at the time.)
Turing proved they are not!

www.cgl.uwaterloo.ca/~csk/halt/

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (12)

Chun, Summer 2012

  Infinitely Many Primes?
  Assume the contrary, then

prove that it’s impossible
  Only a finite # of primes
  Number them p1, p2, …, pn

  Consider the number q
  q = (p1 * p2 * … * pn) + 1
  Dividing q by any prime would

give a remainder of 1
  So q isn’t composite, q is prime
  But we said pn was the biggest,

and q is bigger than pn

  So there IS no biggest pn

Review: Proof by Contradiction

Euclid
www.hisschemoller.com/wp-content/uploads/2011/01/euclides.jpg

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (13)

Chun, Summer 2012

  Given a program and
some input, will that
program eventually
stop? (or will it loop)

  Assume we could
write it, then let’s
prove a contradiction
  1. write Stops on Self?
  2. Write Weird
  3. Call Weird on itself

Turing’s proof : The Halting Problem

UC Berkeley CS10 “The Beauty and Joy of Computing” : Limits of Computability (14)

Chun, Summer 2012

  Complexity theory
important part of CS

  If given a hard
problem, rather than
try to solve it yourself,
see if others have tried
similar problems

  If you don’t need an
exact solution, many
approximation
algorithms help

  Some not solvable!

Conclusion

P=NP question even made its way
into popular culture, here shown in

the Simpsons 3D episode!

