
Spring 2011 EECS150 lec01-intro Page

EECS150 - Digital Design
Lecture 1 - Introduction

January 18, 2011

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

1

Spring 2011 EECS150 lec01-intro Page

Teaching Staff
Professor John Wawrzynek
(Warznek)
631 Soda Hall
johnw@cs.berkeley.edu
Office Hours: Tu, Th 3:30-4:30pm, & by appointment.

All TA office hours held in 125 Cory. Check website for days and times.
2

AustinMichael

Spring 2011 EECS150 lec01-intro Page

Electronics all around us

3

Consumer
Products

Communications
Infrastructure

Automotive

Automotive

Aerospace and
Military

Spring 2011 EECS150 lec01-intro Page

Course Content
Components and Design Techniques for Digital Systems

more specifically
Synchronous Digital Hardware Systems

– Example digital representation: music waveform

– A series of numbers is used to represent the waveform,
rather than a voltage or current, as in analog systems.

• Synchronous: “Clocked” - all changes in the system are controlled
by a global clock and happen at the same time (not asynchronous)

• Digital: All inputs/outputs and internal values (signals) take on
discrete values (not analog).

4

Spring 2011 EECS150 lec01-intro Page

Course Content - Design Layers

Not a course on transistor physics and transistor
circuits. Although, we will look at these to better
understand the primitive elements for digital circuits.

High-level Organization : Hardware Architectures
System Building Blocks : Arithmetic units, controllers

Circuit Elements : Memories, logic blocks
Transistor-level circuit implementations

Circuit primitives : Transistors, wires

5

Not a course on computer architecture or the
architecture of other systems. Although we will look at
these as examples.

Spring 2011 EECS150 lec01-intro Page

Course Content

IC processing

Transistor Physics

Devices

Circuits

EE 40

CS 61C

Gates

FlipFlops

HDL

Machine Organization

Instruction Set Arch

Programming Languages

Asm / Machine Lang
Deep Digital Design Experience

Fundamentals of Boolean Logic

Synchronous Circuits

Finite State Machines

Timing & Clocking

Device Technology & Implications

Controller Design

Arithmetic Units

Encoding, Framing

Testing, Debugging

Hardware Architecture

Hardware Design Language (HDL)

Design Flow (CAD)

6

Spring 2011 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1980:
– Example project: pong game with buttons for paddle and

LEDs for output.
– Few 10’s of logic gates

– Gates hand-wired together on “bread-board” (protoboard).

– No computer-aided design tools

– Debugged with oscilloscope and logic analyzer

7

Spring 2011 EECS150 lec01-intro Page

Course Evolution

• Final project circa 1995:
– Example project: MIDI music synthesizer
– Few 1000’s of logic gates

– Gates wired together internally on field programmable gate array
(FPGA) development board with some external components.

– Circuit designed “by-hand”, computer-aided design tools to help map the
design to the hardware.

– Debugged with circuit simulation, oscilloscope and logic analyzer

8

Spring 2011 EECS150 lec01-intro Page

Moore’s Law – 2x stuff per 1-2 yr

9

Spring 2011 EECS150 lec01-intro Page

Course Evolution

• Final project circa 2000-2008:
– Example project: eTV - streaming

video broadcast over Ethernet,
student project decodes and
displays video

– Few 10,000’s of logic gates

– Gates wired together internally on FPGA
development board and communicate
with standard external components.

– Circuit designed with logic-synthesis
tools, computer-aided design tools to
help map the design to the hardware.

– Debugged with circuit simulation, logic
analyzer, and in-system debugging tools.

10

Calinx Board

Spring 2011 EECS150 lec01-intro Page

Course Evolution

• Beginning 2009:
– Xilinx XUPV5

development board (a.k.a
ML505)

– Could enable very aggressive
final projects.

– But, modest use of resources
this semester.

– Project debugging with
simulation tools and with in-
system hardware debugging
tools.

11

• State-of-the-art LX110T
FPGA: ~1M logic gates.

– Interfaces: Audio in/out, digital video,
ethernet, on-board DRAM, PCIe,
USB, ...

Spring 2011 EECS150 lec01-intro Page

Final Project: Spring 2011

12

• Executes most commonly used MIPS instructions.
• Pipelined (high performance) implementation.
• Serial console interface for shell interaction, debugging.
• Ethernet interface for high-speed file transfer.
• Video interface for display with 2-D vector graphics acceleration.
• Supported by a C language compiler.

Spring 2011 EECS150 lec01-intro Page

Administrivia

13

Spring 2011 EECS150 lec01-intro Page

Enrollment
• If you are enrolled and plan to take the course

you must attend your lab section this week and
next.

• Lab sections this week (meet TAs, pick up accounts,
check card-key)

• No discussion sections this week.

• No “lab lecture” Fridays, 2-3pm.

14

Spring 2011 EECS150 lec01-intro Page

Attendance
• Attend regular lectures and ask questions, offer comments,

etc. Part of your grade will depend on it!

• Attend your lab section. You must stick with the same lab
section all semester.
– Lab exercises will be done individually; project with a partner.
– We will put together a lab section exchange in a few weeks to help

you move to a different section.

• Attend any discussion section. You may attend any discussion
section that you want regardless of which one you are enrolled
in.

• The entire teaching staff hold regular office hours (see class
webpage). Take advantage of this opportunity! Come early
(and often). Don’t wait until the night before an assignment
is due!

15

Spring 2011 EECS150 lec01-intro Page

Course Materials

• Class notes, homework & lab assignments,
solutions, and other documentation will be
available on the class webpage linked to the
calendar:

 http://www-inst.eecs.berkeley.edu/~cs150
– Check the class webpage and newsgroup often!
– You are responsible for checking the class

webpage at least once every 24 hours (in case we
need to post changes/corrections.]

Textbook: Harris & Harris
Publisher: Morgan Kaufmann

16

piazza For online Q/A.
http://www.piazzza.com/

More info later.

Spring 2011 EECS150 lec01-intro Page

Course Grading

Final
25%

Project
35%

HW
10%

labs
5%

• Comprehensive Exam held during
Finals week: Monday May 9
11:30-2:30.

• Project critical part of the course -
graded on timeliness, completeness
and optimality. Lots more on this later.

• Evening midterm exams, check
calendar for days.

• Weekly homework based on reading
and lectures.
• out before the end of each week,

due before Th lecture of following
week.

• Lab exercises for weeks 2-5, followed
by project checkpoints and final
checkoff.

• Labs and checkpoints due at the
beginning of your next lab session.

• Participation points
awards for class
discussion, and online
involvement.

17

MT1
10%

MT2
10%

participation
5%

Spring 2011 EECS150 lec01-intro Page

Tips on How to Get a Good Grade
The lecture material is not the most challenging part of the course.

• You should be able to understand everything as we go along.
• Do not fall behind in lecture and tell yourself you “will figure it out later from the

notes or book”.
• Notes will be online before the lecture (usually the night before). Look at them

before class. Do assigned reading (only the required sections).
• Ask questions in class and stay involved in the class - that will help you

understand. Come to office hours to check your understanding or to ask
qestions.

• The exams will test your depth of knowledge. You need to understand the
material well enough to apply it in new situations (beyond the homework). The
homework is a starting point, not the ending point.

You need to do well on the project to get a good course grade.
• Take the labs very seriously. They are an integral part of the course.
• Choose your partner carefully. Your best friend may not be the best choice!
• Most important (this comes from 30+ years of hardware design experience):

• Be well organized and neat with homework, labs, project.
• In lab, add complexity a little bit at a time - always have a working design.
• Don’t be afraid to throw away your design and start fresh.

18

Spring 2011 EECS150 lec01-intro Page

Cheating
• We have posted the details of my cheating policy on the

class web site. Please read it and ask questions.
• If you turn in someone else's work as if it were your own,

you are guilty of cheating. This includes homework sets,
answers on exams, verilog code, block diagrams, etc.

• Also, if you knowingly aid in cheating, you are guilty.
• We have software that automatically compares your

submitted work to others.
• However, it is okay to discuss with others lab exercises and

the project. Okay to work together on homework. But
everyone must turn in their own work.

• If we catch you cheating, I will give you an F on the
assignment. If it is a midterm exam, final exam, or final
project, I will give you an F in the class. You will be
reported to the office of student conduct. If you have a
previous case of cheating on your record, I will push to
have you expelled from the University.

19

Spring 2011 EECS150 lec01-intro Page

A few basic concepts

20

Spring 2011 EECS150 lec01-intro Page

Example Digital Systems
• General Purpose Desktop/Server Digital Computer

– Often designed to maximize performance. "Optimized for speed"

- Usually designed to minimize cost.
“Optimized for low cost”

- Of course, low cost comes at the expense of
speed.

• Handheld Calculator

21

Spring 2011 EECS150 lec01-intro Page

Example Digital Systems
• Digital Watch

– Low power operation comes at the expense of:
• lower speed
• higher cost

Designed to minimize power.
Single battery must last for years.

22

Spring 2011 EECS150 lec01-intro Page

Basic Design Tradeoffs

• You can improve on one at the expense of worsening one
or both of the others.

• These tradeoffs exist at every level in the system design -
every sub-piece and component.

• Design Specification -
– Functional Description.

– Performance, cost, power constraints.

• As a designer you must make the tradeoffs necessary to
achieve the function within the constraints.

23

Spring 2011 EECS150 lec01-intro Page

Hierarchy & Design Representation

24

Spring 2011 EECS150 lec01-intro Page

Hierarchy in Designs
• Helps control complexity -

– by hiding details and reducing the total number of things to handle at
any time.

• Modulalizes the design -
– divide and conquer
– simplifies implementation and debugging

• Top-Down Design
– Starts at the top (root) and works down by successive refinement.

• Bottom-up Design
– Starts at the leaves & puts pieces together to build up the design.

• Which is better?
– In practice both are needed & used.

• Need top-down divide and conquer to handle the complexity.
• Need bottom-up because in a well designed system, the structure

is influence by what primitives are available.

25

Spring 2011 EECS150 lec01-intro Page

Digital Design: what’s it all about?
Given a functional description and performance, cost, & power constraints,

come up with an implementation using a set of primitives.

• How do we learn how to do this?

1. Learn about the primitives and how to use them.

2. Learn about design representations.

3. Learn formal methods to optimally manipulate the representations.

4. Look at design examples.

5. Use trial and error - CAD tools and prototyping. Practice!
• Digital design is in some ways more an art than a science. The

creative spirit is critical in combining primitive elements & other
components in new ways to achieve a desired function.

• However, unlike art, we have objective measures of a design:

Performance Cost Power

26

Spring 2011 EECS150 lec01-intro Page

Processor Review from CS61C

27

Spring 2011 EECS150 lec01-intro Page

Key 61c Concept: “Stored Program” Computer

28

• Instructions and data stored in memory.

• Only difference between two applications (for
example, a text editor and a video game), is the
sequence of instructions.

• To run a new program:

• No rewiring required

• Simply store new program in memory

• The processor hardware executes the
program:

• fetches (reads) the instructions from
memory in sequence

• performs the specified operation

• The program counter (PC) keeps track of the
current instruction.

High-level code
// add the numbers from 0 to 9

int sum = 0;

int i;

for (i=0; i!=10; i = i+1) {

 sum = sum + i;

}

MIPS assembly code
$s0 = i, $s1 = sum

 addi $s1, $0, 0

 add $s0, $0, $0

 addi $t0, $0, 10

for: beq $s0, $t0, done

 add $s1, $s1, $s0

 addi $s0, $s0, 1

 j for

done:

Spring 2011 EECS150 lec01-intro Page

Key 61c Concept:
High-level languages help productivity.

29

Therefore with the help of a compiler (and assembler), to run
applications all we need is a means to interpret (or “execute”)

machine instructions. Usually the application calls on the
operating system and libraries to provide special functions.

•! Start with opcode

•! Opcode tells how to parse the remaining bits

•! If opcode is all 0’s
–! R-type instruction

–! Function bits tell what instruction it is

•! Otherwise

–! opcode tells what instruction it is

Spring 2011 EECS150 lec01-intro Page

Interpreting Machine Code

30

A processor is a machine code interpreter build in hardware!

Spring 2011 EECS150 lec01-intro Page

Abstraction Layers

• Architecture: the programmer’s view of the
computer

– Defined by instructions (operations) and operand
locations

• Microarchitecture: how to implement an
architecture in hardware (covered in great
detail later)

• The microarchitecture is built out of “logic”
circuits and memory elements (this semester).

• All logic circuits and memory elements are
implemented in the physical world with
transistors.

• This semester we will implement our projects
using circuits on FPGAs (field programmable
gate arrays).

31

Spring 2011 EECS150 lec01-intro Page

Abstract View of MIPS Implementation

32

Data
Out

clk

5

Rw Ra Rb

Register
File

Rd

Data
In

Data
Addr Data

Memory

Instruction

Instruction
Address

Instruction
Memory

PC

5
Rs

5
Rt

32

323232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

clk clk

A
LU

How do we implement these various pieces?

Spring 2011 EECS150 lec01-intro Page

Extra Slides

33

Spring 2011 EECS150 lec01-intro Page

MIPS Register Definitions

34

Name Register Number Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 procedure return values

$a0-$a3 4-7 procedure arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 more temporaries

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 procedure return address

Spring 2011 EECS150 lec01-intro Page

Instruction Format Review

35

Spring 2011 EECS150 lec01-intro Page

R-Type Instructions

36

•! Register-type

•! 3 register operands:

–! rs, rt: source registers

–! rd: destination register

•! Other fields:

–! op: the operation code or opcode (0 for R-type instructions)

–! funct: the function

 together, the opcode and function tell the computer

 what operation to perform

–! shamt: the shift amount for shift instructions, otherwise it’s 0

Note the order of registers in the assembly code:

 add rd, rs, rt

Spring 2011 EECS150 lec01-intro Page

R-Type Examples

37

•! Immediate-type

•! 3 operands:

–! rs, rt: register operands

–! imm: 16-bit two’s complement immediate

•! Other fields:

–! op: the opcode

–! Simplicity favors regularity: all instructions have opcode

–! Operation is completely determined by the opcode

Spring 2011 EECS150 lec01-intro Page

I-Type Instructions

38

Note the differing order of

registers in the assembly and

machine codes:

addi rt, rs, imm

lw rt, imm(rs)

sw rt, imm(rs)

Spring 2011 EECS150 lec01-intro Page

I-Type Examples

39

•! Jump-type

•! 26-bit address operand (addr)

•! Used for jump instructions (j)

Spring 2011 EECS150 lec01-intro Page

J-Type

40

Spring 2011 EECS150 lec01-intro Page

MIPS150 Project Instruction Summary (SP09)

41

mnemonic description type
lw load word I
sw store word I
beq branch if equal I
bne branch if not equal I
addu add R
subu subtract R
or bitwise or R
slt set less than R
sll shift left logical R
sra shift right arithmetic R
addiu add immediate I
andi and immediate I
ori or immediate I
jr jump register R
jal jump and link J

