# **EECS150 - Digital Design**

Lecture 3 - Field Programmable

# **Gate Arrays (FPGAs)**

January 25, 2010 John Wawrzynek

Spring 2011

EECS150 - LecO3-FPGA

Page 1

# Project platform: Xilinx ML505-110



## **FPGA** Overview

- Basic idea: two-dimensional array of logic blocks and flip-flops with a means for the user to configure (program):
  - 1. the interconnection between the logic blocks,
  - 2. the function of each block.



Simplified version of FPGA internal architecture:

Spring 2011

EECS150 - Lec03-FPGA

Page 3

# Why are FPGAs Interesting?

- Technical viewpoint:
  - For hardware/system-designers, like ASICs only better! "Tape-out" new design every few minutes/hours.
  - Does the "reconfigurability" or "reprogrammability" offer other advantages over fixed logic?
  - Dynamic reconfiguration? In-field reprogramming? Self-modifying hardware, evolvable hardware?

• Staggering logic capacity growth (10000x):

| Year<br>Introduced | Device    | Logic Cells | "logic gate<br>equivalents" |  |  |  |
|--------------------|-----------|-------------|-----------------------------|--|--|--|
| 1985               | XC2064    | 128         | 1024                        |  |  |  |
| 2011               | XC7V2000T | 1,954,560   | 15,636,480                  |  |  |  |

• FPGAs have tracked Moore's Law better than any other programmable device.

# Why are FPGAs Interesting?

- Logic capacity now only part of the story: on-chip RAM, high-speed I/Os, "hard" function blocks, ...
- Modern FPGAs are "reconfigurable systems"



• Have been an archetype for the semiconductor industry as a whole:



Putting the FPGA Business in Perspective. How large is it compared to others?

|              | Q3 2009     | Q4 2009      | Q/Q Growth | Q1 2010 (Guidance) |
|--------------|-------------|--------------|------------|--------------------|
| Broadcom     | \$1,194,745 | \$1,283,434  | 7.4%       | Up 0 to 5%         |
| Marvell      | \$803,098   | <tbd></tbd>  |            |                    |
| Nvidia       | \$903,206   | \$982,500    | 8.8%       | Flat               |
| Xilinx       | \$414,950   | \$513,300    | 23.7%      | down 1% to up 3%   |
| Altera       | \$286,612   | \$365,000    | 27.3%      | up 5 - 10%         |
| ті           | \$2,880,000 | \$3,005,000  | 4.3%       | down 2% - up 6%    |
| INTEL        | \$9,389,000 | \$10,600,000 | 12.9%      | down 5-10%         |
| AMD          | \$1,396,000 | \$1,646,000  | 17.9%      | down "seasonally"  |
| Qualcomm     | \$1,699,000 | \$1,608,000  | -5.4%      | Flat               |
| Atheros      | \$156,641   | \$185,700    | 18.6%      | up 5%              |
| Silicon Labs | \$125,913   | \$127,200    | 1.0%       | Flat to down 5%    |
| Average      |             |              | 5.5%       |                    |

from: mattrhodes.net

- Have attracted an huge amount of investment for new ventures:
  - Most startups have failed. Why?

| • | <b>Business</b> | dominated | by | Xilinx | and Altera |
|---|-----------------|-----------|----|--------|------------|
|---|-----------------|-----------|----|--------|------------|

| Rank 2007 | Rank 2008 | Company                                 | Revenue (\$M)<br>2007 | Revenue (\$M)<br>2008 | Revenue<br>Change<br>2007-2008 | Market<br>Share<br>2008 |
|-----------|-----------|-----------------------------------------|-----------------------|-----------------------|--------------------------------|-------------------------|
| 1         | 1         | Xilinx                                  | 1,809                 | 1.906                 | 5.4%                           | 51.2%                   |
| 2         | 2         | Altera                                  | 1,216                 | 1,323                 | 8.8%                           | 35.5%                   |
| 3         | 3         | Lattice Semiconductor                   | 229                   | 222                   | -3.1%                          | 6.0                     |
| 4         | 4         | Actel                                   | 196                   | 218                   | 11.2%                          | 5.9%                    |
| 6         | 5         | QuickLogic                              | 28                    | 23                    | -17.9%                         | 0.6%                    |
| 5         | 6         | Cypress Semiconductor                   | 32                    | 21                    | -34.4%                         | 0.6%                    |
| 7         | 7         | Atmel                                   | 14                    | 9                     | -35.7%                         | 0.2%                    |
| 8         | 8         | Chengdu Sino<br>Microelectronics System | 4                     | 3                     | -25.0%                         | 0.1%                    |
|           |           | Others                                  | 0                     | 0                     | NM                             | 0.0%                    |
|           |           | Total Market                            | 3,528                 | 3,725                 | 5.6%                           | 100.0%                  |

# Why are FPGAs Interesting?

- FPGAs at the leading edge of IC processing:
  - Xilinx V7 out next year with 28nm TSMC processing
  - Foundaries like FPGAs regularity help get process up the "learning curve"
  - High-volume commitment gets interest of foundry
  - (Gives FPGAs a competitive edge over ASICs, which usually are built on an older process.)

- FPGAs have been wildly successful even though they are inefficient in silicon area, energy, and performance :
  - "Measuring the Gap Between FPGAs and ASICs", Ian Kuon and Jonathan Rose, FPGA'06
  - Versus ASICs: area 40X, delay 3-4X, power 12X
- How can this be? Is there something more important than silicon efficiency?

# Die Photos: Virtex FPGA vs. Pentium IV



- FGPA Vertex chip looks remarkably structured
  - Very dense, very regular structure
- "Full-Custom" Pentium chip somewhat more random in structure
  - Large on-chip memories (caches) are visible

## FPGAs are in widespread use



## **FPGA Variations**

- Families of FPGA's differ in: ٠
  - physical means of implementing user programmability,
  - arrangement of interconnection wires, and
  - the basic functionality of the logic \_ blocks.
- Most significant difference is in the method for providing flexible blocks and connections:



Anti-fuse based (ex: Actel)

temporary high voltage creates pérmanent short

- Non-volatile, relatively small +
- fixed (non-reprogrammable) \_

 Several "floating gate" or eprom style approaches have been used. One now by Actel.

Fall 2010

CS 294 - LecO1 Intro

#### **FPGA Variations**



# **User Programmability**

Latch-based (Xilinx, Altera, ...)



- + reconfigurable
- volatile
- relatively large.

- Latches are used to:
  - 1. control a switch to make or break cross-point connections in the interconnect
  - 2. define the function of the logic blocks
  - 3. set user options:
    - within the logic blocks
    - in the input/output blocks
    - global reset/clock
- "Configuration bit stream" is loaded under user control

# **Background (review) for upcoming**

 A <u>MUX</u> or multiplexor is a combinational logic circuit that chooses between 2<sup>N</sup> inputs under the control of N control signals.



• A <u>latch</u> is a 1-bit memory (similar to a flip-flop).

Spring 2011

EECS150 - Lec03-FPGA

Page 17

# **Idealized FPGA Logic Block**



- 4-input look up table (LUT)
  - implements combinational logic functions
- Register
  - optionally stores output of LUT

# **4-LUT Implementation**



# LUT as general logic gate

| <ul> <li>An n-lut as a direct implementation of a function <b>truth-table</b>.</li> <li>Each latch location holds the value of the function corresponding to one input combination.</li> </ul>                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Example: 2-lut<br>$\begin{array}{r} \underline{\text{INPUTS} \text{ AND OR}} \\ \hline 00 & 0 & 0 \\ 01 & 0 & 1 \\ 10 & 0 & 1 \\ 11 & 1 & 1 \end{array}$ Implements <i>any</i> function of 2 inputs.<br>How many of these are there? | 0011<br>0100<br>0101<br>0110<br>0110<br>0111<br>1000<br>1001<br>1011<br>1100<br>1101 |
| How many functions of n inputs?                                                                                                                                                                                                      | 1110<br>1111                                                                         |

## **FPGA Generic Design Flow**

Design Entry

Design Implementation

- Design Entry:
  - Create your design files using:
    - schematic editor or
    - HDL (hardware description languages: Verilog, VHDL)
- Design Implementation:
  - Logic synthesis (in case of using HDL entry) followed by,
  - Partition, place, and route to create configuration bit-stream file
- Design verification:
  - Optionally use simulator to check function,
  - Load design onto FPGA device (cable connects PC to development board), optional "logic scope" on FPGA
    - · check operation at full speed in real environment.

Fall 2010

CS 294 - LecO1 Intro

Page 21

Design

Verification

### **Example Partition, Placement, and Route**



#### **Example Partition, Placement, and Route**



Two partitions. Each has single output, no more than 4 inputs, and no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: the partition can be arbitrarily large as long as it has not more than 4 inputs and 1 output, and no more than 1 flip-flop.

Fall 2010

CS 294 - LecO1 Intro

Page 23



# Project platform: Xilinx ML505-110



# FPGA: Xilinx Virtex-5 XC5VLX110T







Colors represent different types of resources:

Logic Block RAM DSP (ALUs) Clocking I/O Serial I/O + PCT

A routing fabric runs throughout the chip to wire everything together.





## **Configurable Logic Blocks (CLBs)**

Slices define regular connections to the switching fabric, and to slices in CLBs above and below it on the die.



The LX110T has 17,280 slices. EECS150 - LecO3-FPGA



Lower-lefteronnertof the die.

X2Y0

UG190 5 02 122605

X0Y0

201

Page 32

Page 31

# Atoms: 5-input Look Up Tables (LUTs)



Computes any 5input logic function.

> Timing is independent of function.

| Latches        | ¥        |
|----------------|----------|
| set during     | <b>V</b> |
| configuration, | 33       |

# Virtex-5 6-LUTs: Composition of 5-LUTs



#### The LX110T has 69,120 6-LUTs 6-LUT delay is 0.9 ns Spring 2011 EECS150 - LecO3-FPGA

May be used as one 6-input LUT (D6 out) ...

... or as two 5-input LUTS (D6 and D5)

Combinational logic (post configuration) Page 34

## The simplest view of a slice

(D) |

(C) i

(CQ) I

(B)

(BQ)

(A) I

(AQ)

DQ

DQ

DQ

D Q (DQ)

SLICE

06

06

06

06

LUT

LUT

LUT

LUT

A[6:1]

A[6:1]

A[6:1]

A[6:1]

(D[6:1])\_6

(C[6:1]) 6

(B[6:1])

(A[6:1])

(CLK)

6



Four Flip-Flops

Switching fabric may see combinational and registered outputs.

An actual Virtex-5 slice adds many small features to this simplified diagram. We show them one by one ...

Page 35

EECS150 - LecO3-FPGA









Ş

From eight 5-LUTs ... to one 8-LUT.

Combinational or registered outs.

Flip-flops unused by LUTs can be used standalone.

Flip-flops ...

Page 38

# Slice flip-flop properties ...



# <u>Virtex 5 Verical Logic</u>



# Putting it all together ... a SLICEL.



The previous slides explain all SLICEL features.

About 50% of the 17,280 slices in an LX110T are SLICELs.

The other slices are SLICEMs, and have extra features.<sub>Page 41</sub>







# SLICEM shift register (one of many).



Spring 2011

EECS150 - LecO3-FPGA

Page 45

## SLICEL vs SLICEM ...



## Virtex-5 DSP48E Slice



# Efficient implementation of multiply, add, bit-wise logical.

Spring 2011

EECS150 - LecO3-FPGA

```
Page 47
```

single column.

| Table | 1: | Virtex-5 | FPGA | Family | Members |
|-------|----|----------|------|--------|---------|
|-------|----|----------|------|--------|---------|

| Configurable | onfigurable Logic Blocks (CLBs) |                                   | Block RAM Blocks               |                                 | PowerPC              | Endpoint |             | Max RocketIO<br>Transceivers <sup>(6)</sup> |                     | Total                        | Max                             |     |     |                             |                            |
|--------------|---------------------------------|-----------------------------------|--------------------------------|---------------------------------|----------------------|----------|-------------|---------------------------------------------|---------------------|------------------------------|---------------------------------|-----|-----|-----------------------------|----------------------------|
| Device       | Array Vine                      | Virtex-5<br>Slices <sup>(1)</sup> | Max<br>Distributed<br>RAM (Kb) | DSP48E<br>Slices <sup>(2)</sup> | 18 Kb <sup>(3)</sup> | 36 Kb    | Max<br>(Kb) | CMTs <sup>(4)</sup>                         | Processor<br>Blocks | Blocks for<br>PCI<br>Express | Ethernet<br>MACs <sup>(5)</sup> | GTP | GTX | I/O<br>Banks <sup>(8)</sup> | User<br>I/O <sup>(7)</sup> |
| XC5VLX30     | 80 x 30                         | 4,800                             | 320                            | 32                              | 64                   | 32       | 1,152       | 2                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 13                          | 400                        |
| XC5VLX50     | 120 x 30                        | 7,200                             | 480                            | 48                              | 96                   | 48       | 1,728       | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 17                          | 560                        |
| XC5VLX85     | 120 x 54                        | 12,960                            | 840                            | 48                              | 192                  | 96       | 3,456       | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 17                          | 560                        |
| XC5VLX110    | 160 x 54                        | 17,280                            | 1,120                          | 64                              | 256                  | 128      | 4,608       | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 23                          | 800                        |
| XC5VLX155    | 160 x 76                        | 24,320                            | 1,640                          | 128                             | 384                  | 192      | 6,912       | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 23                          | 800                        |
| XC5VLX220    | 160 x 108                       | 34,560                            | 2,280                          | 128                             | 384                  | 192      | 6,912       | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 23                          | 800                        |
| XC5VLX330    | 240 x 108                       | 51,840                            | 3,420                          | 192                             | 576                  | 288      | 10,368      | 6                                           | N/A                 | N/A                          | N/A                             | N/A | N/A | 33                          | 1,200                      |
| XC5VLX20T    | 60 x 26                         | 3,120                             | 210                            | 24                              | 52                   | 26       | 936         | 1                                           | N/A                 | 1                            | 2                               | 4   | N/A | 7                           | 172                        |
| XC5VLX30T    | 80 x 30                         | 4,800                             | 320                            | 32                              | 72                   | 36       | 1,296       | 2                                           | N/A                 | 1                            | 4                               | 8   | N/A | 12                          | 360                        |
| XC5VLX50T    | 120 x 30                        | 7,200                             | 480                            | 48                              | 120                  | 60       | 2,160       | 6                                           | N/A                 | 1                            | 4                               | 12  | N/A | 15                          | 480                        |
| XC5VLX85T    | 120 x 54                        | 12,960                            | 840                            | 48                              | 216                  | 108      | 3,888       | 6                                           | N/A                 | 1                            | 4                               | 12  | N/A | 15                          | 480                        |
| XC5VLX110T   | 160 x 54                        | 17,280                            | 1,120                          | 64                              | 296                  | 148      | 5,328       | 6                                           | N/A                 | 1                            | 4                               | 16  | N/A | 20                          | 680                        |
| XC5VLX155T   | 160 x 76                        | 24,320                            | 1,640                          | 128                             | 424                  | 212      | 7,632       | 6                                           | N/A                 | 1                            | 4                               | 16  | N/A | 20                          | 680                        |
| XC5VLX220T   | 160 x 108                       | 34,560                            | 2,280                          | 128                             | 424                  | 212      | 7,632       | 6                                           | N/A                 | 1                            | 4                               | 16  | N/A | 20                          | 680                        |
| XC5VLX330T   | 240 x 108                       | 51,840                            | 3,420                          | 192                             | 648                  | 324      | 11,664      | 6                                           | N/A                 | 1                            | 4                               | 24  | N/A | 27                          | 960                        |
| XC5VSX35T    | 80 x 34                         | 5,440                             | 520                            | 192                             | 168                  | 84       | 3,024       | 2                                           | N/A                 | 1                            | 4                               | 8   | N/A | 12                          | 360                        |
| XC5VSX50T    | 120 x 34                        | 8,160                             | 780                            | 288                             | 264                  | 132      | 4,752       | 6                                           | N/A                 | 1                            | 4                               | 12  | N/A | 15                          | 480                        |
| XC5VSX95T    | 160 x 46                        | 14,720                            | 1,520                          | 640                             | 488                  | 244      | 8,784       | 6                                           | N/A                 | 1                            | 4                               | 16  | N/A | 19                          | 640                        |
| XC5VSX240T   | 240 x 78                        | 37,440                            | 4,200                          | 1,056                           | 1,032                | 516      | 18,576      | 6                                           | N/A                 | 1                            | 4                               | 24  | N/A | 27                          | 960                        |
| XC5VTX150T   | 200 x 58                        | 23,200                            | 1,500                          | 80                              | 456                  | 228      | 8,208       | 6                                           | N/A                 | 1                            | 4                               | N/A | 40  | 20                          | 680                        |
| XC5VTX240T   | 240 x 78                        | 37,440                            | 2,400                          | 96                              | 648                  | 324      | 11,664      | 6                                           | N/A                 | 1                            | 4                               | N/A | 48  | 20                          | 680                        |
| XC5VFX30T    | 80 x 38                         | 5,120                             | 380                            | 64                              | 136                  | 68       | 2,448       | 2                                           | 1                   | 1                            | 4                               | N/A | 8   | 12                          | 360                        |
| XC5VFX70T    | 160 x 38                        | 11,200                            | 820                            | 128                             | 296                  | 148      | 5,328       | 6                                           | 1                   | 3                            | 4                               | N/A | 16  | 19                          | 640                        |
| XC5VFX100T   | 160 x 56                        | 16,000                            | 1,240                          | 256                             | 456                  | 228      | 8,208       | 6                                           | 2                   | 3                            | 4                               | N/A | 16  | 20                          | 680                        |
| XC5VFX130T   | 200 x 56                        | 20,480                            | 1,580                          | 320                             | 596                  | 298      | 10,728      | 6                                           | 2                   | 3                            | 6                               | N/A | 20  | 24                          | 840                        |
| XC5VFX200T   | 240 x 68                        | 30,720                            | 2,280                          | 384                             | 912                  | 456      | 16,416      | 6                                           | 2                   | 4                            | 8                               | N/A | 24  | 27                          | 960                        |

#### To be continued ...

Throughout the semester, we will look at different Virtex-5 features in-depth.

Switch fabric Block RAM DSP48 (ALUs) Clocking I/O Serial I/O + PCI

