EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs)
January 25, 2010
John Wawrzynek

Project platform: Xilinx ML505-110

FPGA Overview

- Basic idea: two-dimensional array of logic blocks and flip-flops with a means for the user to configure (program):

1. the interconnection between the logic blocks,
2. the function of each block.

Simplified version of FPGA internal architecture:

Why are FPGAs Interesting?

- Technical viewpoint:
- For hardware/system-designers, like ASICs only better! "Tape-out" new design every few minutes/hours.
- Does the "reconfigurability" or "reprogrammability" offer other advantages over fixed logic?
- Dynamic reconfiguration? In-field reprogramming? Self-modifying hardware, evolvable hardware?

Why are FPGAs Interesting?

- Staggering logic capacity growth (I0000x):

Year Introduced	Device	Logic Cells	"logic gate equivalents"
1985	XC2064	128	1024
2011	XC7V2000T	$1,954,560$	$15,636,480$

- FPGAs have tracked Moore's Law better than any other programmable device.

Why are FPGAs Interesting?

- Logic capacity now only part of the story: on-chip RAM, high-speed I/Os, "hard" function blocks, ...
- Modern FPGAs are "reconfigurable systems"

But, the heterogeneity erodes the "purity" argument. Mapping is more difficult. Introduces uncertainty in efficiency of solution.

Why are FPGAs Interesting?

- Have been an archetype for the semiconductor industry as a whole:

[^0]
Putting the FPGA Business in Perspective. How large is it compared to others?

	Q3 2009	Q4 2009	Q/Q Growth	Q12010 (Guidance)
Broadcom	\$1,194,745	\$1,283,434	7.4\%	Up 0 to 5\%
Marvell	\$803,098	<TBD>		
Nvidia	\$903,206	\$982,500	8.8\%	Flat
Xilinx	\$414,950	\$513,300	23.7\%	down 1\% to up 3\%
Altera	\$286,612	\$365,000	27.3\%	up 5-10\%
TI	\$2,880,000	\$3,005,000	4.3\%	down 2\%-up 6\%
INTEL	19,389,000	\$10,600,000	12.9\%	down 5-10\%
AMD	\$1,396,000	\$1,646,000	17.9\%	down "seasonally"
Qualcomm	\$1,699,000	\$1,608,000	-5.4\%	Flat
Atheros	\$156,641	\$185,700	18.6\%	up 5\%
Silicon Labs	\$125,913	\$127,200	1.0\%	Flat to down 5\%
Average			5.5\%	

from: mattrhodes.net

Why are FPGAs Interesting?

- Have attracted an huge amount of investment for new ventures:
- Most startups have failed. Why?
- Business dominated by Xilinx and Altera

Worldwide FPGA/PLD vendor revenues and rankings, 2007-2008						
Rank 2007	Rank 2008	company	$\text { Revenuene }_{2007}^{\text {(SM) })}$	$\begin{aligned} & \text { Revenue (SM) } \\ & 2008 \end{aligned}$	$\begin{gathered} \text { Revenue } \\ \text { Change } \\ \text { 2007-2008 } \end{gathered}$	Market Share 2008
1	1	Xilinx	1,809	1.906	5.4\%	51.2\%
2	2	Altera	1,216	1,323	8.8\%	35.5\%
3	3	Lattice Semiconductor	229	222	-3.1\%	6.0
4	4	Actel	196	218	11.2\%	5.9\%
6	5	QuickLogic	28	23	-17.9\%	0.6\%
5	6	Cypress Semiconductor	32	21	-34.4\%	0.6\%
7	7	Atmel	14	9	-35.7\%	0.2\%
8	8	Chengdu Sino Microelectronics System	4	3	-25.0\%	0.1\%
		Others	0	0	NM	0.0\%
		Total Market	3,528	3,725	5.6\%	100.0\%

Why are FPGAs Interesting?

- FPGAs at the leading edge of IC processing:
- XilinxV7 out next year with $28 n m$ TSMC processing
- Foundaries like FPGAs - regularity help get process up the "learning curve"
- High-volume commitment gets interest of foundry
- (Gives FPGAs a competitive edge over ASICs, which usually are built on an older process.)

Why are FPGAs Interesting?

- FPGAs have been wildly successful even though they are inefficient in silicon area, energy, and performance :
- "Measuring the Gap Between FPGAs and ASICs", Ian Kuon and Jonathan Rose, FPGA'06
- Versus ASICs: area 40X, delay 3-4X, power I2X
- How can this be? Is there something more important than silicon efficiency?

Die Photos: Virtex FPGA vs. Pentium IV

- FGPA Vertex chip looks remarkably structured
- Very dense, very regular structure
- "Full-Custom" Pentium chip somewhat more random in structure
- Large on-chip memories (caches) are visible

FPGAs are in widespread use

FPGA Variations

- Families of FPGA's differ in:
- physical means of implementing user programmability,
- arrangement of interconnection wires, and
- the basic functionality of the logic blocks.
- Most significant difference is in the method for providing flexible blocks and connections:
- Anti-fuse based (ex: Actel)

+ Non-volatile, relatively small
- fixed (non-reprogrammable)
- Several "floating gate" or eprom style approaches have been used. One now by Actel.

FPGA Variations

- "Floating-gate" / EPROM / FLASH based (ex: Actel, others)

User Programmability

- Latch-based (Xilinx, Altera, ...)

+ reconfigurable
- volatile
- relatively large.
- Latches are used to:

1. control a switch to make or break cross-point connections in the interconnect
2. define the function of the logic blocks
3. set user options:

- within the logic blocks
- in the input/output blocks
- global reset/clock
- "Configuration bit stream" is loaded under user control

Background (review) for upcoming

- A MUX or multiplexor is a combinational logic circuit that chooses between 2^{N} inputs under the control of N control signals.

- A latch is a 1-bit memory (similar to a flip-flop).

Idealized FPGA Logic Block

- 4-input look up table (LUT)
- implements combinational logic functions
- Register
- optionally stores output of LUT

4-LUT Implementation

- n-bit LUT is implemented as a $2^{n} \times 1$ memory:

- inputs choose one of 2^{n} memory locations.
- memory locations [latches] are normally loaded with values from user's configuration bit stream.
- Inputs to mux control are the CLB inputs.
Result is a general purpose "logic gate".
- n-LUT can implement any function of n inputs!

LUT as general logic gate

- An n-lut as a direct implementation of a function truth-table.
- Each latch location holds the value of the function corresponding to one input combination.

Example: 2-lut
INPUTS AND OR
00
$01 \quad 0 \quad 1$

10	0	1
11	1	1

11	1

Implements any function of 2 inputs.
How many of these are there?
How many functions of n inputs?

Example: 4-lut
INPUTS

FPGA Generic Design Flow

- Design Entry:
- Create your design files using:
- schematic editor or

- HDL (hardware description languages: Verilog, VHDL)
- Design Implementation:
- Logic synthesis (in case of using HDL entry) followed by,
- Partition, place, and route to create configuration bit-stream file
- Design verification:
- Optionally use simulator to check function,
- Load design onto FPGA device (cable connects PC to development board), optional "logic scope" on FPGA
- check operation at full speed in real environment.

Example Partition, Placement, and Route

- Idealized FPGA structure:

- collection of gates and flip-flops

Circuit combinational logic must be "covered" by 4-input 1-output LUTs.
Flip-flops from circuit must map to FPGA flip-flops.
(Best to preserve "closeness" to CL to minimize wiring.)
Best placement in general attempts to minimize wiring.
Vdd, GND, clock, and global resets are all "prewired".

Example Partition, Placement, and Route

Two partitions. Each has single output, no more than 4 inputs, and no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: the partition can be arbitrarily large as long as it has not more than 4 inputs and 1 output, and no more than 1 flip-flop.

Xilinx FPGAs [interconnect detail]

Project platform: Xilinx ML505-110

FPGA: Xilinx Virtex-5 XC5VLX110T

From die to PC board ...

Ball Grid
Array
(BGA)

Package

Solder Ball

Spring 2011

Organic Build-Up Substrate

Banks of I/O placed on chip floor plan

Routing fabric requires many interconnect layers.

Configurable Logic Blocks [CLBs]

Slices define regular connections to the switching fabric, and to slices in
CLBs above and below it on the die.

The LX110T has 17,280 slices.

X-Y naming convention for slices

X0, X2, \ldots are lower CLB slices.
$\mathrm{X} 1, \mathrm{X} 3, \ldots$ are upper CLB slices.
Y0, Y1, \ldots are CLB column positions.

Atoms: 5-input Look Up Tables [LUTs]

A2		
A3		
A4	LUT5	D
A5		
A6		

| $A[6: 2]$ |
| :---: |$|$

\vdots	
11101	0
11110	0
11111	1

Spring 2011

Computes any 5input logic function.

Timing is

 independent of function.
Virtex-5 6-LUTs: Composition of 5-LUTs

May be used as one 6-input LUT (D6 out) ...
... or as two
5-input LUTS (D6 and D5)

Combinational logic
(post configuration)

The simplest view of a slice

Four 6-LUTs

Four Flip-Flops

Switching fabric may see combinational and registered outputs.

An actual Virtex-5 slice adds many small features to this simplified diagram. We show them one by one ...
EECS150-LecO3-FPGA

Or one 8-LUTs per slice ...

Third multiplexer (F8MUX)

Third input (BX)

Configuring the " n " of an n-LUT ...
Page 37

Extra muxes to chose LUT option ...

From eight 5-LUTs
... to one 8-LUT.

Combinational
or registered outs.
-
Flip-flops unused by
LUTs can be used standalone.

Flip-flops ...

Slice flip-flop properties

Each state element may be edge-triggered FF or latch.

Clock enable, clock polarity, and set/reset lines in a slice are shared.

Each state element may respond differently to set/reset signal.

Next: The vertical dimension ...
EECS150-LecO3-FPGA

Putting it all together ... a SLICEL.

The previous slides explain all SLICEL features.

About 50\% of the 17,280 slices in an LX110T are SLICELs.

The other slices are SLICEMs, and have extra features. Proge 41

Recall: 5-LUT architecture ...

-12		
A3		
A4	LUT5	D
A5		
$A 6$		

$A[6: 2]$	D
00000	1
00001	0
00010	1

11101 11110 11111

v 32 Latches. Configured to 1 or 0.

Some parts of a logic design need many state elements.

SLICEMs replace normal 5-LUTs with circuits that can act like 5-LUTs, but can alternatively use the 32 latches as RAM, ROM, shift registers. Page 42

A SLICEM 6-LUT ...
Memory data input

A 1.1 Mb distributed RAM can be made if all SLICEMs of an LX110T are used as RAM.

Many RAM configurations possible ...

Figure 5-14: Distributed RAM (RAM256X1S) Spring 2011

Example configuration:
Single-port $256 \mathrm{~b} \times 1$, registered output.

A complete list:

- Single-Port 32×1-bit RAM
- Dual-Port 32×1-bit RAM
- Quad-Port 32×2-bit RAM
- Simple Dual-Port 32×6-bit RAM
- Single-Port 64×1-bit RAM
- Dual-Port 64×1-bit RAM
- Quad-Port 64×1-bit RAM
- Simple Dual-Port 64×3-bit RAM
- Single-Port 128×1-bit RAM
- Dual-Port 128×1-bit RAM
- Single-Port 256×1-bit RAM

A 128×32 LUT RAM ExCO $150-$ Leocasfegh has a 1.1 ns access fimime.

SLICEM shift register (one of many).

SLICEL vs SLICEM ...

SLICEM adds memory features to LUTs, + muxes.

SLICEM

Virtex-5 DSP48E Slice

*These signals are dedicated routing paths internal to the DSP48E column. They are not accessible via fabric routing resources.

Efficient implementation of multiply, add, bit-wise logical.
 LX110T has 64 in a single column.

Table 1: Virtex-5 FPGA Family Members

Device	Configurable Logic Blocks (CLBs)			DSP48E Slices(${ }^{(2)}$	Block RAM Blocks			CMTs ${ }^{(4)}$	PowerPC Processor Blocks	Endpoint Blocks for PCl Express	EthernetMACs(5)	Max RocketiO Transceivers ${ }^{(6)}$		Total VO Banks ${ }^{(8)}$	$\begin{aligned} & \text { Max } \\ & \text { User } \\ & \text { /OO(7) } \end{aligned}$
	$\begin{gathered} \text { Array } \\ \text { (Row } \times \text { Col) } \end{gathered}$	Virtex-5 Slices ${ }^{(1)}$	$\begin{aligned} & \text { Max } \\ & \text { Distributed } \\ & \text { RAM (Kb) } \\ & \hline \end{aligned}$		$18 \mathrm{~Kb}{ }^{(3)}$	36 Kb	$\underset{(\mathrm{Kb})}{\operatorname{Max}}$					GTP	GTX		
XC5VLX30	80×30	4,800	320	32	64	32	1,152	2	N/A	N/A	N/A	N/A	N/A	13	400
XC5VLX50	120×30	7,200	480	48	96	48	1,728	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX85	120×54	12,960	840	48	192	96	3,456	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX110	160×54	17,280	1,120	64	256	128	4,608	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX155	160×76	24,320	1,640	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX220	160×108	34,560	2,280	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX330	240×108	51,840	3,420	192	576	288	10,368	6	N/A	N/A	N/A	N/A	N/A	33	1,200
XC5VLX20T	60×26	3,120	210	24	52	26	936	1	N/A	1	2	4	N/A	7	172
XC5VLX30T	80×30	4,800	320	32	72	36	1,296	2	N/A	1	4	8	N/A	12	360
XC5VLX50T	120×30	7,200	480	48	120	60	2,160	6	N/A	1	4	12	N/A	15	480
XC5VLX85T	120×54	12,960	840	48	216	108	3,888	6	N/A	1	4	12	N/A	15	480
XC5VLX110T	160×54	17,280	1,120	64	296	148	5,328	6	N/A	1	4	16	N/A	20	680
XC5VLX155T	160×76	24,320	1,640	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX220T	160×108	34,560	2,280	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX330T	240×108	51,840	3,420	192	648	324	11,664	6	N/A	1	4	24	N/A	27	960
XC5VSX35T	80×34	5,440	520	192	168	84	3,024	2	N/A	1	4	8	N/A	12	360
XC5VSX50T	120×34	8,160	780	288	264	132	4,752	6	N/A	1	4	12	N/A	15	480
XC5VSX95T	160×46	14,720	1,520	640	488	244	8,784	6	N/A	1	4	16	N/A	19	640
XC5VSX240T	240×78	37,440	4,200	1,056	1,032	516	18,576	6	N/A	1	4	24	N/A	27	960
XC5VTX150T	200×58	23,200	1,500	80	456	228	8,208	6	N/A	1	4	N/A	40	20	680
XC5VTX240T	240×78	37,440	2,400	96	648	324	11,664	6	N/A	1	4	N/A	48	20	680
XC5VFX30T	80×38	5,120	380	64	136	68	2,448	2	1	1	4	N/A	8	12	360
XC5VFX70T	160×38	11,200	820	128	296	148	5,328	6	1	3	4	N/A	16	19	640
XC5VFX100T	160×56	16,000	1,240	256	456	228	8,208	6	2	3	4	N/A	16	20	680
XC5VFX130T	200×56	20,480	1,580	320	596	298	10,728	6	2	3	6	N/A	20	24	84048
XC5VFX200T	240×68	30,720	2,280	384	912	456	16,416	6	2	4	8	N/A	24	27	960

[^0]: from: mattrhodes.net

