EECS150 - Digital Design Lecture 4 - Synchronous
 Digital Systems Review Part 2
 January 27, 2011
 John Wawrzynek
 Electrical Engineering and Computer Sciences University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~~cs150

Outline

- Topics in the review, you have already seen in CS61C, and possibly EE40:

1. Digital Signals.
2. General model for synchronous systems.
3. Combinational logic circuits
4. Flip-flops, clocking

Only Two Types of Circuits Exist

- Combinational Logic Blocks [CL]
- State Elements [registers)

State Elements: circuits that store info

- Examples: registers, memories
- Register: Under the control of the "load" signal, the register captures the input value and stores it indefinitely.

often replace by clock signal (clk)
- The value stored by the register appears on the output (after a small delay).
- Until the next load, changes on the data input are ignored (unlike CL, where input changes change output).
- These get used for short term storage (ex: register file), and to help move data around the processor.

Register Details...What's inside?

- n instances of a "Flip-Flop"
- Flip-flop name because the output flips and flops between and 0,1
- D is "data", Q is "output"
- Also called "d-type Flip-Flop"

Flip-flop Timing

- Edge-triggered d-type flip-flop
- This one is "positive edge-triggered"
- "On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored."
- Example waveforms:

Uses for State Elements

1) As a place to store values for some indeterminate amount of time:

- Register files (like \$1-\$31 on the MIPS)
- Memory (caches, and main memory)

2) Help control the flow of information between combinational logic blocks.

- State elements are used to hold up the movement of information at the inputs to combinational logic blocks and allow for orderly passage.

Accumulator Circuit Example

Assume X is a vector of N integers, presented to the input of our accumulator circuit one at a time (one per clock cycle), so that after N clock cycles, S hold the sum of all N numbers.

$\mathbf{S}=\mathbf{0}$; Repeat N times
S = S + X;

- We need something like this: - But not quite.

- Need to use the clock signal to hold up the feedback to match up with the input signal.

Accumulator Circuit

- Put register, with clock signal controlling its load, in feedback path.
- On each clock cycle the register prevents the new value from reaching the input to the adder prematurely. (The new value just waits at the input of the register).
Timing:

Register Details [again]

- A n-bit wide register is nothing but a set of flip-flops [1-bit wide registers] with a common load/clk signal.

- A flip-flop captures its input on the edge of the clock [rising edge in this case - positive edge flip-flop). The new input appears at the output after a short delay.

$\stackrel{c \mid c}{\mathrm{ck}} \underset{\mathrm{d}-\mathrm{FF}_{\mathrm{a}}}{\text { Flip-Flop Timing Details }}$

$\mathrm{CLK} \xrightarrow[\longrightarrow]{\longrightarrow}$
d

Three important times associated with flip-flops:
setup time
hold time
clock-to-q delay.

Accumulator Revisited

- Note:
- Reset signal
(synchronous)
- Timing of X signal is not known without investigating the circuit that supplies X. Here we assume it comes just after S_{i-1}. Observe transient behavior of S_{i}.

Pipelining to improve performance (1/2)

Extra Register are often added to help

 speed up the clock rate.inputs Timing...

R_{i}

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

Pipelining to improve performance ($2 / 2$)

Level-sensitive Latch

Positive Level-sensitive latch:

When CLK is high, latch is transparent, when clk is low, latch retains previous value.

Flip-flops on Virtex5 FPGA

Virtex5 Slice Flip-flops

4 flip-flops / slice (corresponding to the 4 6-LUTs)

Each takes input from LUT output or primary slice input.

Edge-triggered FF vs. level-sensitive latch. Clock-enable input (can be set to 1 to disable) (shared).
Positive versus negative clock-edge.
Synchronous vs. asynchronous reset.
SRHIGH/SRLOW select reset (SR) set.
REV forces opposite state.
INITO/INIT1 used for global reset (not
shown - usually just after power-on and configuration).

Virtex5 Flip-flops "Primitives"

