
Spring 2011 EECS150 - Lec05-Verilog Page 

EECS150 - Digital Design
Lecture 5 - Verilog Introduction

Feb 1, 2011

John Wawrzynek

1

Spring 2011 EECS150 - Lec05-Verilog Page 

Outline

• Background and History of Hardware Description

• Brief Introduction to Verilog Basics

• Lots of examples
– structural, data-flow, behavioral

• Verilog in EECS150

2



Spring 2011 EECS150 - Lec05-Verilog Page 

Design Entry
• Schematic entry/editing used 

to be the standard method in 
industry and universities.

• Used in EECS150 until 2002

 Schematics are intuitive.  They 
match our use of gate-level or 
block diagrams.

 Somewhat physical.  They imply 
a physical implementation.

 Require a special tool (editor).

 Unless hierarchy is carefully 
designed, schematics can be 
confusing and difficult to follow 
on large designs.

• Hardware Description 
Languages (HDLs) are the new 
standard
– except for PC board design, 

where schematics are still used.
3

Spring 2011 EECS150 - Lec05-Verilog Page 

Hardware Description Languages
• Basic Idea:

– Language constructs describe 
circuits with two basic forms:

– Structural descriptions:  
connections of components.  Nearly 
one-to-one correspondence to with 
schematic diagram.

– Behavioral descriptions: use high-
level constructs (similar to 
conventional programming) to 
describe the circuit function.

• Originally invented for simulation.
– Now “logic synthesis” tools exist to 

automatically convert from HDL 
source to circuits.

– High-level constructs greatly 
improves designer productivity.

– However, this may lead you to falsely 
believe that hardware design can be 
reduced to writing programs!*

“Structural” example:
Decoder(output x0,x1,x2,x3;
   inputs a,b)
{
 wire abar, bbar;
 inv(bbar, b);
 inv(abar, a);
 and(x0, abar, bbar);
 and(x1, abar, b   );
 and(x2, a,    bbar);
 and(x3, a,    b   );
} 

“Behavioral” example:
Decoder(output x0,x1,x2,x3;
   inputs a,b)
{
 case [a b]
  00: [x0 x1 x2 x3] = 0x1;
  01: [x0 x1 x2 x3] = 0x2;
  10: [x0 x1 x2 x3] = 0x4;
  11: [x0 x1 x2 x3] = 0x8;
   endcase;
}
  

4

Warning:  this is a fake HDL!

*Describing hardware with a language is similar, however, to writing a parallel program.



Spring 2011 EECS150 - Lec05-Verilog Page 

Sample Design Methodology

HDL
Specification

Hierarchically defines 
structure and/or 
function of circuit.

Simulation

Verification: Does the design
behave as required with regards 

to function, timing, and power 
consumption?

Synthesis

Maps specification to 
resources of implementation 

platform (FPGA or custom 
silicon).

5

Note:  This in not the entire story.  Other tools are useful for 
analyzing HDL specifications.  More on this later.

Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog
• A brief history:

– Originated at Automated Integrated Design Systems (renamed Gateway) in 1985.  
Acquired by Cadence in 1989.

– Invented as simulation language.  Synthesis was an afterthought.  Many of the basic 
techniques for synthesis were developed at Berkeley in the 80’s and applied 
commercially in the 90’s.

– Around the same time as the origin of Verilog, the US Department of Defense 
developed VHDL (A double acronym! VSIC (Very High-Speed Integrated Circuit) 
HDL).  Because it was in the public domain it began to grow in popularity.

– Afraid of losing market share, Cadence opened Verilog to the public in 1990.  
– An IEEE working group was established in 1993, and ratified IEEE Standard 1394 

(Verilog) in 1995.  We use IEEE Std 1364-2001.
– Verilog is the language of choice of Silicon Valley companies, initially because of 

high-quality tool support and its similarity to C-language syntax.
– VHDL is still popular within the government, in Europe and Japan, and some 

Universities.
– Most major CAD frameworks now support both.
– Latest Verilog version is “system Verilog” .
– Latest HDL:  C++ based.  OSCI (Open System C Initiative).

6



Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog Introduction

• A module definition describes a component in a circuit

• Two ways to describe module contents:
– Structural Verilog

• List of sub-components and how they are connected
• Just like schematics, but using text
• tedious to write, hard to decode
• You get precise control over circuit details
• May be necessary to map to special resources of the FPGA

– Behavioral Verilog
• Describe what a component does, not how it does it
• Synthesized into a circuit that has this behavior
• Result is only as good as the tools

• Build up a hierarchy of modules.  Top-level module is your entire 
design (or the environment to test your design).

7

Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog Modules and Instantiation
• Modules define circuit components.  
• Instantiation defines hierarchy of the design.

module addr_cell (a, b, cin, s, cout);
  input     a, b, cin;
  output    s, cout;
  

endmodule

8

Note: A module is not a function in the C sense.  There is no call and 
return mechanism.  Think of it more like a hierarchical data structure. 

name port list

port declarations (input, 
output, or inout)

module body

module adder (A, B, S);
       
addr_cell ac1 (              );
  

endmodule

Instance of addr_cell

... connections ...

keywords



Spring 2011 EECS150 - Lec05-Verilog Page 

module xor_gate ( out, a, b );
  input     a, b;
  output    out;
  wire      aBar, bBar, t1, t2;

  not invA (aBar, a);
  not invB (bBar, b);
  and and1 (t1, a, bBar);
  and and2 (t2, b, aBar);
  or  or1 (out, t1, t2);

endmodule

Structural Model - XOR example

– Notes:  
• The instantiated gates are not “executed”.  They are active always.
• xor gate already exists as a built-in (so really no need to define it).
• Undeclared variables assumed to be wires.  Don’t let this happen to you!

port list

module name

port declarations

instances
Built-in gates

Instance name
Interconnections (note output is first)

9

out

internal signal 
declarations

Spring 2011 EECS150 - Lec05-Verilog Page 

Structural Example: 2-to1 mux

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);
   input in0,in1,select;
   output out;
   wire s0,w0,w1;

   not (s0, select);
   and (w0, s0, in0),
       (w1, select, in1);
   or  (out, w0, w1);

endmodule // mux2

10

C++ style 
comments

Multiple instances 
can share the same 
“master” name.

and (w0, a, b, c, d);

Built-ins gates can 
have > 2 inputs. Ex:

Built-ins don’t need 
Instance names



Spring 2011 EECS150 - Lec05-Verilog Page 

Instantiation, Signal Array, Named ports

11

module mux4 (in0, in1, in2, in3, select, out); 
input in0,in1,in2,in3; 
input [1:0] select; 
output out; 
wire w0,w1; 
  mux2 
    m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)), 
    m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)), 
    m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out)); 
endmodule // mux4 

Signal array.  Declares select[1], select[0]

Named ports.  Highly recommended.

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);
   input in0,in1,select;
   output out;
   wire s0,w0,w1;
   not (s0, select);
   and (w0, s0, in0),
       (w1, select, in1);
   or  (out, w0, w1);
endmodule // mux2

Spring 2011 EECS150 - Lec05-Verilog Page 

module foo (out, in1, in2);
  input         in1, in2;
  output        out;

      assign out = in1 & in2;

endmodule

Simple Behavioral Model

“continuous assignment”
Connects out to be the “and” 
of in1 and in2.

12

Shorthand for explicit instantiation of “and” gate (in this case).

The assignment continuously happens, therefore any change on 
the rhs is reflected in out immediately (except for the small delay 
associated with the implementation of the &).  

Not like an assignment in C that takes place when the program 
counter gets to that place in the program.



Spring 2011 EECS150 - Lec05-Verilog Page 

assign R = X | (Y & ~Z);

assign r = &X;

assign R = (a == 1’b0) ? X : Y;

assign P = 8'hff;

assign P = X * Y; 

assign P[7:0] = {4{X[3]}, X[3:0]};

assign {cout, R} = X + Y + cin;

assign Y = A << 2;

assign Y = {A[1], A[0], 1’b0, 1’b0};

use of bit-wise Boolean operators

Continuous Assignment Examples

13

wire [3:0] X,Y,R;
wire [7:0] P;
wire r, a, cout, cin;

example 
reduction 
operator

conditional operator

example constants

arithmetic operators (use with care!)

(ex: sign-extension)

bit field concatenation

bit shift operator

equivalent bit shift

Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog Operators

14



Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog Numbers

14  ordinary decimal number

-14 2’s complement representation

12’b0000_0100_0110    binary number (“_” is ignored)

12’h046    hexadecimal number with 12 bits

By default, Values are unsigned
e.g.,  C[4:0] = A[3:0] + B[3:0];
if A = 0110 (6) and B = 1010(-6)
    C = 10000 not 00000
i.e., B is zero-padded, not sign-extended

wire signed [31:0] x; 

Declares a signed (2’s complement) signal array.
15

Constants:

Signal Values:

Spring 2011 EECS150 - Lec05-Verilog Page 

Non-continuous Assignments

16

A bit strange from a hardware specification point of view.  
Shows off Verilog roots as a simulation language.

“reg” type declaration.  Not really a register  
in this case.  Just a Verilog rule.

“always” block example:

keyword
“sensitivity” list, 

triggers the action in 
the body.

module and_or_gate (out, in1, in2, in3);
  input  in1, in2, in3;
  output  out;
  reg   out;

  always @(in1 or in2 or in3) begin
     out = (in1 & in2) | in3;
  end

endmodule brackets multiple statements 
(not necessary in this example.

Isn’t this just: assign out = (in1 & in2) | in3;?  
                                                     Why bother?



Spring 2011 EECS150 - Lec05-Verilog Page 

Always Blocks

17

Always blocks give us some constructs that are impossible 
or awkward in continuous assignments.  

module mux4 (in0, in1, in2, in3, select, out);
   input in0,in1,in2,in3;
   input [1:0] select;
   output      out;
   reg         out;
   
 always @ (in0 in1 in2 in3 select)
  case (select)
   2’b00: out=in0;
   2’b01: out=in1;
   2’b10: out=in2;
   2’b11: out=in3;
  endcase
endmodule // mux4

case statement example:

keyword The statement(s) corresponding 
to whichever constant matches 

“select” get applied.

Couldn’t we just do this with nested “if”s?  
                                                     Well yes and no!

Spring 2011 EECS150 - Lec05-Verilog Page 

Always Blocks

18

module mux4 (in0, in1, in2, in3, select, out);
   input in0,in1,in2,in3;
   input [1:0] select;
   output      out;
   reg         out;
   
 always @ (in0 in1 in2 in3 select)
  if (select == 2’b00) out=in0;
      else if (select == 2’b01) out=in1;
           else if (select == 2’b10) out=in2;
                else out=in3;
endmodule // mux4

Nested if-else example:

Nested if structure leads to “priority logic” structure, with 
different delays for different inputs (in3 to out delay > than 
in0 to out delay).       Case version treats all inputs the same.



Spring 2011 EECS150 - Lec05-Verilog Page 

State Elements

19

Always blocks are the only way to specify the “behavior” of 
state elements.  Synthesis tools will turn state element 

behaviors into state element instances.  

module dff(q, d, clk, set, rst);
  input d, clk, set, rst;
  output q;
  reg q;

  always @(posedge clk)
    if (rst)
      q <= 1’b0;
    else if (set)
      q <= 1’b1;
    else
      q <= d;
endmodule

D-flip-flop with synchronous set and reset example:

How would you add an CE (clock enable) input?

keyword

“always @ (posedge clk)” is key 
to flip-flop generation.

This gives priority to 
reset over set and 

set over d.

On FPGAs, maps to native flip-flop.

d s
q

rclk

set

rst

Spring 2011 EECS150 - Lec05-Verilog Page 

Finite State Machines

20

State Transition Diagram Implementation Circuit Diagram

Holds a symbol to 
keep track of which 

bubble the FSM is in.

CL functions to determine output 
value and next state based on input 

and current state.
out = f(in, current state)

next state = f(in, current state)



Spring 2011 EECS150 - Lec05-Verilog Page 

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) state <= IDLE;
 else state <= next_state;

21

Must use reset to force 
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic 
signals for transition.

Constants local 
to this module.

A separate always block will be used for combination logic part of FSM.  Next state 
and output generation.  (Always blocks in a design work in parallel.)

Spring 2011 EECS150 - Lec05-Verilog Page 

FSMs (cont.)
// always block for combinational logic portion
always @(state or in) 
case (state)
// For each state def output and next
  IDLE   : begin
           out = 1’b0;
           if (in == 1’b1) next_state = S0;
           else next_state = IDLE;  
         end
  S0     : begin
           out = 1’b0;
           if (in == 1’b1) next_state = S1;
           else next_state = S0;
         end
  S1     : begin
           out = 1’b1;
           if (in == 1’b1) next_state = S1;
           else next_state = IDLE;
  default: begin
      next_state = IDLE;
      data_out = 1’b0;
    end
endcase
endmodule

22

For each state define: 

Each state becomes 
a case clause.

Output value(s)
State transition

Use “default” to cover unassigned state.  
Usually unconditionally transition to reset state.



Spring 2011 EECS150 - Lec05-Verilog Page 

Bonus Example

“always @ (posedge CLK)” forces Q register 
to be rewritten every cycle.

“>>” operator does right shift (shifts in a 
zero on the left).

Shifts can be done with concatenation.  
Continuous assign example:

wire [3:0] A, B;
assign B = {1’b0, A[3:1]}

//Parallel to Serial converter
module ParToSer(LD, X, out, CLK); 
 input [3:0] X;
 input LD, clk;
 output out; 
 reg out;
 reg [3:0] Q;
 assign out = Q[0];
 always @ (posedge clk)
  if (LD) Q<=X;
  else Q <= Q>>1;
endmodule // mux2

23

Spring 2011 EECS150 - Lec05-Verilog Page 

Verilog in EECS150

• We will primarily use behavioral modeling along with 
instantiation to 1) build hierarchy and, 2) map to FPGA 
resources not supported by synthesis.

• Favor continuous assign and avoid always blocks unless:
– no other alternative: ex: state elements, case

– helps readability and clarity of code: ex: large nested if else

• Use named ports.

• Verilog is a big language.  This is only an introduction.  
– Our text book is a good source.  Read and use chapter 4.
– Be careful of what you read on the web.  Many bad examples out 

there.

– We will be introducing more useful constructs throughout the 
semester.  Stay tuned!

24



Spring 2011 EECS150 - Lec05-Verilog Page 

Final thoughts on Verilog Examples
Verilog looks like C, but it describes hardware
Multiple physical elements with parallel activities and temporal relationships.

A large part of digital design is knowing how to write Verilog 
that gets you the desired circuit.  First understand the circuit 
you want then figure out how to code it in Verilog.  If you do one 
of these activities without the other, you will struggle.  These 
two activities will merge at some point for you.

Be suspicious of the synthesis tools!  Check the output of the 
tools to make sure you get what you want.  

25


