EECS150 - Digital Design

Lecture 11 - Project Description, Part 2: CPU Pipeline, Memory Blocks

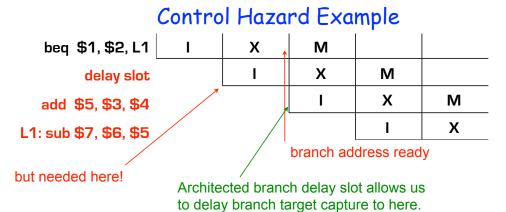
Feb 22, 2010 John Wawrzynek

 Spring 2011
 EECS150 - Lec11-proj2
 Page 1

Project Overview

- A. Serial Interface
- B. MIPS150 pipeline structure
- C. Memories, project memories and FPGAs
- D. Dynamic Memory (DRAM)
- E. Caches
- F. Video subsystem
- G. Ethernet Interface
- H. Project specification and grading standard

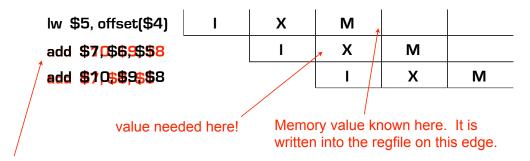
MIPS150 Pipeline


The blocks in the datapath with the greatest delay are: IMEM, ALU, and DMEM. Allocate one pipeline stage to each:

Use PC register as address Use ALU to Access data memory or I/O to IMEM and retrieve next compute result, device for load or store. instruction. Instruction gets memory address, Allow for setup time for stored in a pipeline register, or compare register file write. also called "instruction registers for register", in this case. branch.

Most details you will need to work out for yourself. Some details to follow ... In particular, let's look at hazards.

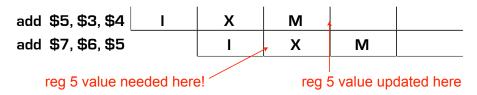
Spring 2011 EECS150 - Lec11-proj2 Page 3


MIPS 3-stage Pipeline

Therefore no extra logic is required.

MIPS 3-stage Pipeline

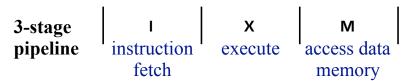
Load Hazard



"Architected load delay slot" on MIPS allows compiler to deal with the delay. No regfile bypassing needed here assuming regfile "write before read".

 Spring 2011
 EECS150 - Lec11-proj2
 Page 5

MIPS 3-stage Pipeline


Data Hazard

Ways to fix:

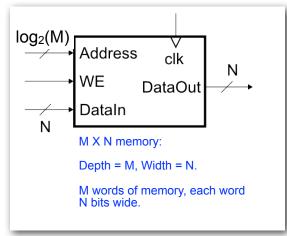
- 1. Stall the pipeline behind first add to wait for result to appear in register file. NOT ALLOWED this semester.
- 2. Selectively forward ALU result back to input of ALU.
- Need to add mux at input to ALU, add control logic to sense when to activate. A bit complex to design. Check book for details.

Project CPU Pipelining Summary

- Pipeline rules:
 - Writes/reads to/from DMem use leading edge of "M"
 - Writes to RegFile use trailing edge of "M"
 - Instruction Decode and Register File access is up to you.
- 1 Load Delay Slot, 1 Branch Delay Slot
 - No Stalling may be used to accommodate pipeline hazards (in final version).
- · Other:
 - Target frequency to be announced later (50-100MHz)
 - Minimize cost
 - Posedge clocking only

 Spring 2011
 EECS150 - Lec11-proj2
 Page 7

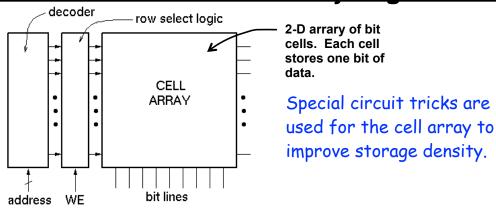
Memory-Block Basics


Uses:

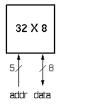
Whenever a large collection of state elements is required.

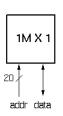
- data & program storage
- general purpose registers
- data buffering
- table lookups
- CL implementation

- RAM random access memory
- ROM read only memory
- EPROM, FLASH electrically programmable read only memory

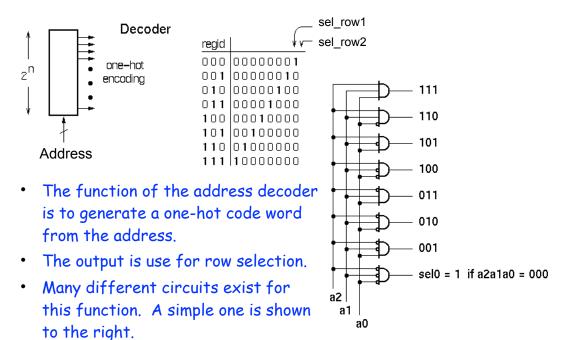


Memory Components Types:

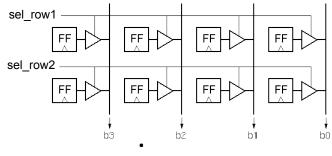

- Volatile:
 - Random Access Memory (RAM):
 - DRAM "dynamic" Focus Monday
 SRAM "static" Focus Today
- · Non-volatile:
 - Read Only Memory (ROM):
 - Mask ROM "mask programmable"
 - EPROM "electrically programmable"
 - EEPROM "erasable electrically programmable"
 - FLASH memory similar to EEPROM with programmer integrated on chip

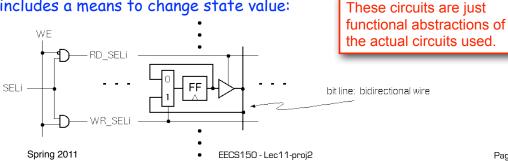

All these types are available as stand alone chips or as blocks in other chips.

Standard Internal Memory Organization



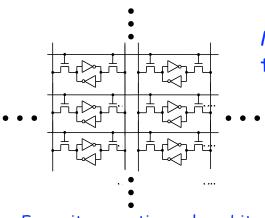
- RAM/ROM naming convention:
 - examples: 32×8 , "32 by 8" => 32 8-bit words
 - 1M X 1, "1 meg by 1" => 1M 1-bit words


Address Decoding

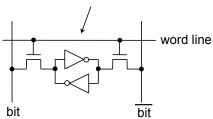

 Spring 2011
 EECS150 - Lec11-proj2
 Page 11

Memory Block Internals

For read operation, functionally the memory is equivalent to a 2-D array off flip-flops with tristate outputs on each:



For write operation, functionally equivalent includes a means to change state value:


Page 12

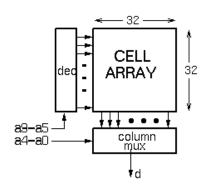
SRAM Cell Array Details

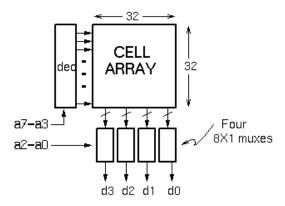
Most common is 6transistor (6T) cell array.

Word selects this cell, and all others in a row.

For write operation, column bit lines are driven differentially (0 on one, 1 on the other). Values overwrites cell state.

For read operation, column bit lines are equalized (set to same voltage), then released. Cell pulls down one bit line or the other.

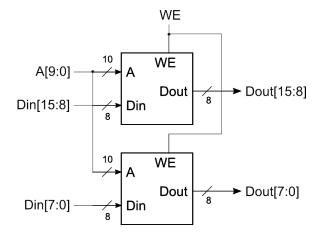

Spring 2011


EECS150 - Lec 11-proj2

Page 13

Column MUX in ROMs and RAMs:

- · Permits input/output data widths different from row width.
- · Controls physical aspect ratio
 - Important for physical layout and to control delay on wires.

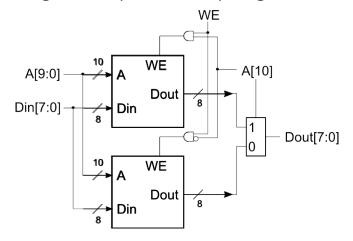

Technique illustrated for read operation. Similar approach for write.

Spring 2011 EECS150 - Lec11-proj2 Page 14

Cascading Memory-Blocks

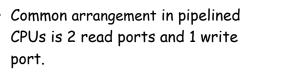
How to make larger memory blocks out of smaller ones.

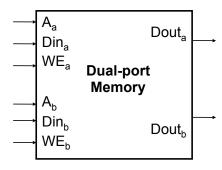
Increasing the width. Example: given 1Kx8, want 1Kx16

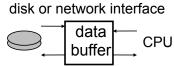


 Spring 2011
 EECS150 - Lec11-proj2
 Page 15

Cascading Memory-Blocks


How to make larger memory blocks out of smaller ones.


Increasing the depth. Example: given 1Kx8, want 2Kx8

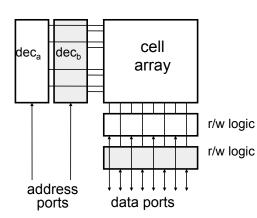

Multi-ported Memory

- Motivation:
 - Consider CPU core register file:
 - 1 read or write per cycle limits processor performance.
 - · Complicates pipelining. Difficult for different instructions to simultaneously read or write regfile.
 - Common arrangement in pipelined CPUs is 2 read ports and 1 write

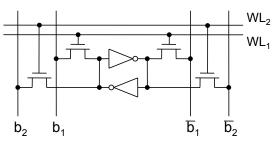
- I/O data buffering:

dual-porting allows both sides to simultaneously access memory at full bandwidth.

Spring 2011


EECS150 - Lec11-proj2

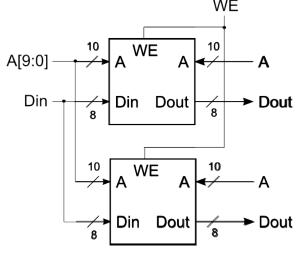
Page 17


Page 18

Dual-ported Memory Internals

Add decoder, another set of read/write logic, bits lines, word lines:

Example cell: SRAM

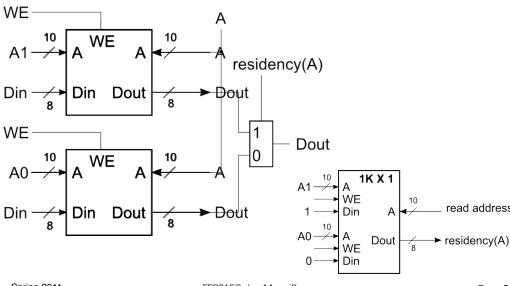

- Repeat everything but crosscoupled inverters.
- This scheme extends up to a couple more ports, then need to add additional transistors.

Spring 2011 EECS150 - Lec11-proj2

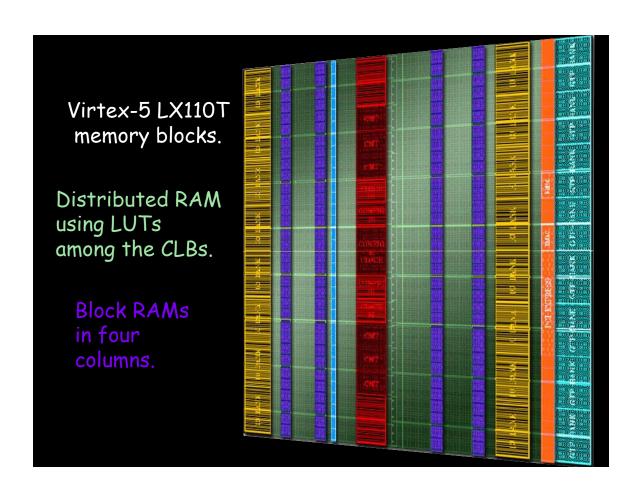
Adding Ports to Primitive Memory Blocks

Adding a read port to a simple dual port (SDP) memory.

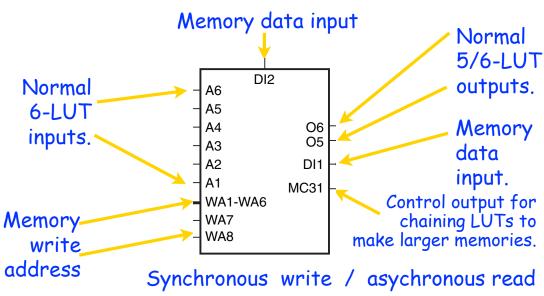
Example: given 1Kx8 SDP, want 1 write & 2 read ports.



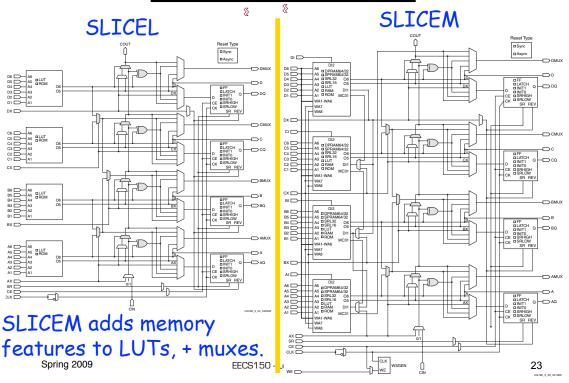
 Spring 2011
 EECS150 - Lec11-proj2
 Page 19

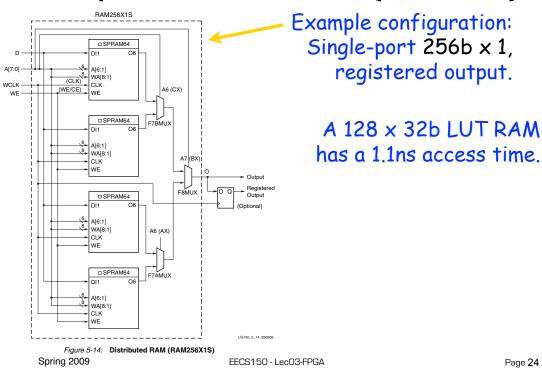

Adding Ports to Primitive Memory Blocks

How to add a write port to a simple dual port memory.

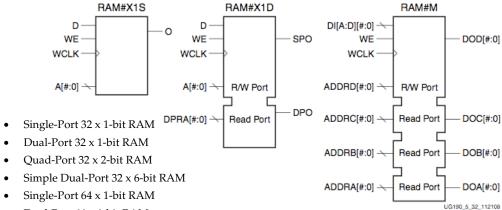

Example: given 1Kx8 SDP, want 1 read & 2 write ports.

//


A SLICEM 6-LUT ...


A 1.1 Mb distributed RAM can be made if all SLICEMs of an LX110T are used as RAM.

Spring 2009 EECS150 - Lec03-FPGA Page 22


SLICEL vs SLICEM ...

Example Distributed RAM (LUT RAM)

Distributed RAM Primitives

- Dual-Port 64 x 1-bit RAM
- All are built from a single slice or less. Quad-Port 64 x 1-bit RAM
- Simple Dual-Port 64 x 3-bit RAM
- Remember, though, that the SLICEM LUT Single-Port 128 x 1-bit RAM
- Dual-Port 128 x 1-bit RAM is naturally only 1 read and 1 write port.
- Single-Port 256 x 1-bit RAM

Spring 2009 EECS150 - LecO3-FPGA Page 25

Example Dual Port Configurations

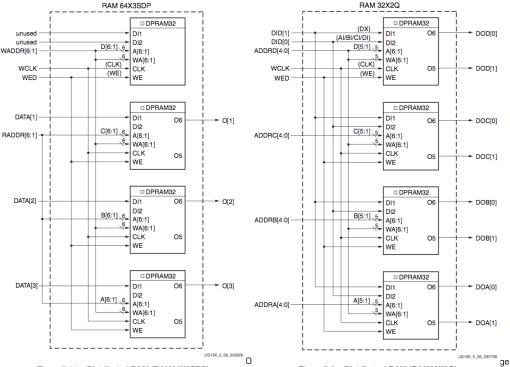
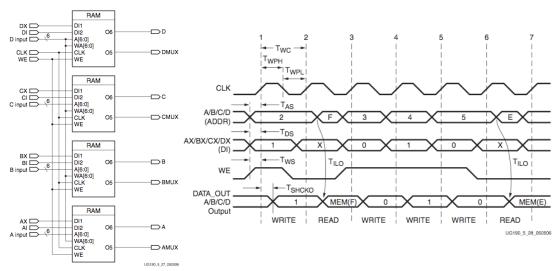
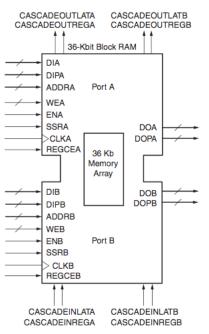


Figure 5-11: Distributed RAM (RAM64X3SDP)

Figure 5-6: Distributed RAM (RAM32X2Q)

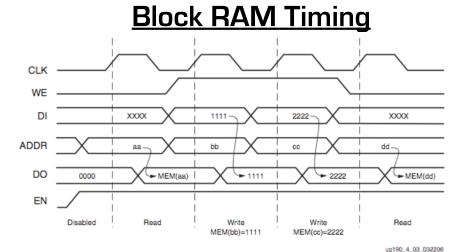
Distributed RAM Timing




Figure 5-27: Simplified Virtex-5 FPGA SLICEM Distributed RAM

Spring 2009 EECS150 - LecO3-FPGA Page 27

Table 1: Virtex-5 FPGA Family Members


Device	Configurable Logic Blocks (CLBs)				Block RAM Blocks				PowerPC	Endpoint	F41	Max RocketlO Transceivers(6)		Total	Max
	Array (Row x Col)	Virtex-5 Slices ⁽¹⁾	Max Distributed RAM (Kb)	DSP48E Slices ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	CMTs ⁽⁴⁾	Processor Blocks	Blocks for PCI Express	Ethernet MACs ⁽⁵⁾	GTP	GTX	I/O Banks ⁽⁸⁾	User I/O ⁽⁷⁾
XC5VLX30	80 x 30	4,800	320	32	64	32	1,152	2	N/A	N/A	N/A	N/A	N/A	13	400
XC5VLX50	120 x 30	7,200	480	48	96	48	1,728	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX85	120 x 54	12,960	840	48	192	96	3,456	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX110	160 x 54	17,280	1,120	64	256	128	4,608	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX155	160 x 76	24,320	1,640	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX220	160 x 108	34,560	2,280	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX330	240 x 108	51,840	3,420	192	576	288	10,368	6	N/A	N/A	N/A	N/A	N/A	33	1,200
XC5VLX20T	60 x 26	3,120	210	24	52	26	936	1	N/A	1	2	4	N/A	7	172
XC5VLX30T	80 x 30	4,800	320	32	72	36	1,296	2	N/A	1	4	8	N/A	12	360
XC5VLX50T	120 x 30	7,200	480	48	120	60	2,160	6	N/A	1	4	12	N/A	15	480
XC5VLX85T	120 x 54	12,960	840	48	216	108	3,888	6	N/A	1	4	12	N/A	15	480
XC5VLX110T	160 x 54	17,280	1,120	64	296	148	5,328	6	N/A	1	4	16	N/A	20	680
XC5VLX155T	160 x 76	24,320	1,640	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX220T	160 x 108	34,560	2,280	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX330T	240 x 108	51,840	3,420	192	648	324	11,664	6	N/A	1	4	24	N/A	27	960
XC5VSX35T	80 x 34	5,440	520	192	168	84	3,024	2	N/A	1	4	8	N/A	12	360
XC5VSX50T	120 x 34	8,160	780	288	264	132	4,752	6	N/A	1	4	12	N/A	15	480
XC5VSX95T	160 x 46	14,720	1,520	640	488	244	8,784	6	N/A	1	4	16	N/A	19	640
XC5VSX240T	240 x 78	37,440	4,200	1,056	1,032	516	18,576	6	N/A	1	4	24	N/A	27	960
XC5VTX150T	200 x 58	23,200	1,500	80	456	228	8,208	6	N/A	1	4	N/A	40	20	680
XC5VTX240T	240 x 78	37,440	2,400	96	648	324	11,664	6	N/A	1	4	N/A	48	20	680
XC5VFX30T	80 x 38	5,120	380	64	136	68	2,448	2	1	1	4	N/A	8	12	360
XC5VFX70T	160 x 38	11,200	820	128	296	148	5,328	6	1	3	4	N/A	16	19	640
XC5VFX100T	160 x 56	16,000	1,240	256	456	228	8,208	6	2	3	4	N/A	16	20	680
XC5VFX130T	200 x 56	20,480	1,580	320	596	298	10,728	6	2	3	6	N/A	20	24	8402
XC5VFX200T	240 x 68	30,720	2,280	384	912	456	16,416	6	2	4	8	N/A	24	27	960

Block RAM Overview

- 36K bits of data total, can be configured as:
 - 2 independent 18Kb RAMs, or one 36Kb RAM.
- Each 36Kb block RAM can be configured as:
 - 64Kx1 (when cascaded with an adjacent 36Kb block RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36 memory.
- Each 18Kb block RAM can be configured as:
 - 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.
- Write and Read are synchronous operations.
- The two ports are symmetrical and totally independent (can have different clocks), sharing only the stored data.
- Each port can be configured in one of the available widths, independent of the other port.
 The read port width can be different from the write port width for each port.
- The memory content can be initialized or cleared by the configuration bitstream.

Spring 2009 EECS150 - Lec03-FPGA Page 29

- Note this is in the default mode, "WRITE_FIRST". Other possible modes are "READ_FIRST", and "NO_CHANGE".
- Optional output register, would delay appearance of output data by one cycle.
- Maximum clock rate, roughly 400MHz.

Spring 2009 EECS150 - LecO3-FPGA Page 30

Verilog Synthesis Notes

- Block RAMS and LUT RAMS all exist as primitive library elements (similar to FDRSE). However, it is much more convenient to use inference.
- Depending on how you write your verilog, you will get either a collection of block RAMs, a collection of LUT RAMs, or a collection of flip-flops.
- The synthesizer uses size, and read style (synch versus asynch) to determine the best primitive type to use.
- It is possible to force mapping to a particular primitive by using synthesis directives. However, if you write your verilog correctly, you will not need to use directives.
- The synthesizer has limited capabilities (eg., it can combine primitives for more depth and width, but is limited on porting options). Be careful, as you might not get what you want.
- See Symplify User Guide, and XST User Guide for examples.

 Spring 2011
 EECS150 - Lec11-proj2
 Page 31

Inferring RAMs in Verilog

```
// 64X1 RAM implementation using distributed RAM

module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

verilog reg array used with
"always @ (posedge ... infers
always @ (posedge ... infers
memory array.
if (we)
    temp[addr] <= d;
assign q = temp[addr];
endmodule</pre>
Asynchronous read
infers LUT RAM
```

Dual-read-port LUT RAM

```
//
// Multiple-Port RAM Descriptions
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
   input clk;
   input we;
   input [5:0] wa;
   input [5:0] ra1;
   input [5:0] ra2;
   input [15:0] di;
   output [15:0] do1;
   output [15:0] do2;
        [15:0] ram [63:0];
   always @(posedge clk)
   begin
      if (we)
          ram[wa] <= di;</pre>
   assign do2 = ram[ra2];
endmodule
```

 Spring 2011
 EECS150 - Lec11-proj2
 Page 33

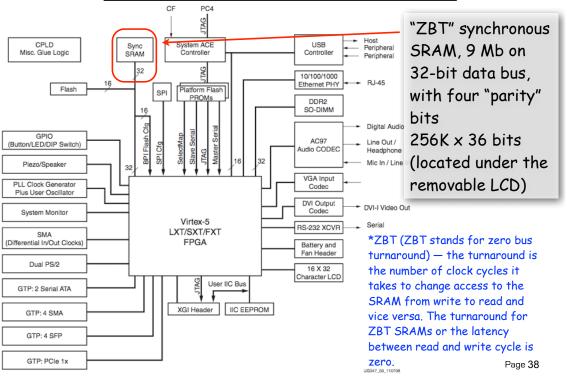
Block RAM Inference

```
//
// Single-Port RAM with Synchronous Read
module v_rams_07 (clk, we, a, di, do);
    input clk;
    input we;
    input [5:0] a;
    input [15:0] di;
    output [15:0] do;
          [15:0] ram [63:0];
    reg
    reg [5:0] read a;
    always @(posedge clk) begin
        if (we)
            ram[a] <= di;
                                    Synchronous read
       read_a <= a; ----- (registered read address)
                                     infers Block RAM
    assign do = ram[read a];
endmodule
```

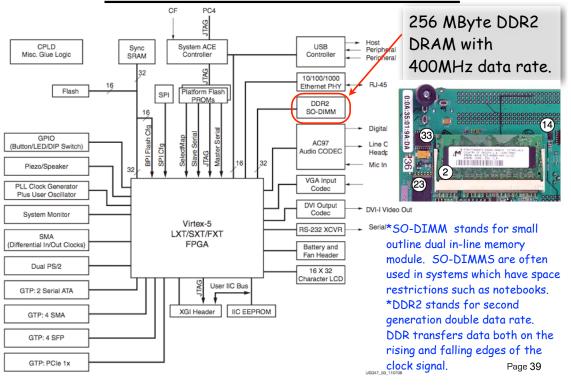
Block RAM initialization

```
module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
   output[3:0] data_out;
   input [2:0] ADDR;
   input [3:0] data_in;
   input CLK, WE;
   reg [3:0] mem [7:0];
   reg [3:0] read addr;
   initial
                                               "data.dat" contains initial RAM
     begin
                                             contents, it gets put into the bitfile
       $readmemb("data.dat", mem);
                                              and loaded at configuration time.
     end
                                              (Remake bits to change contents)
   always@(posedge CLK)
     read_addr <= ADDR;</pre>
   assign data_out = mem[read_addr];
   always @(posedge CLK)
     if (WE) mem[ADDR] = data_in;
   endmodule
  Spring 2011
                               EECS150 - Lec11-proj2
                                                                          Page 35
```

Dual-Port Block RAM


```
module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);
   parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;
   input [d_width-1:0] data0, data1;
   input [addr width-1:0] waddr0, waddr1;
   input we0, we1, clk0, clk1;
   reg [d_width-1:0] mem [mem_depth-1:0]
   reg [addr_width-1:0] reg_waddr0, reg_waddr1;
   output [d_width-1:0] q0, q1;
   assign q0 = mem[reg_waddr0];
   assign q1 = mem[reg_waddr1];
   always @(posedge clk0)
     begin
       if (we0)
         mem[waddr0] <= data0;</pre>
         reg_waddr0 <= waddr0;</pre>
   always @(posedge clk1)
     begin
       if (wel)
         mem[waddr1] <= data1;</pre>
         reg_waddr1 <= waddr1;
   endmodule
```

Processor Design Considerations (1/2)


- Register File: Consider distributed RAM (LUT RAM)
 - Size is close to what is needed: distributed RAM primitive configurations are 32 or 64 bits deep. Extra width is easily achieved by parallel arrangements.
 - LUT-RAM configurations offer multi-porting options useful for register files.
 - Asynchronous read, might be useful by providing flexibility on where to put register read in the pipeline.
- Instruction / Data Caches : Consider Block RAM
 - Higher density, lower cost for large number of bits
 - A single 36kbit Block RAM implements 1K 32-bit words.
 - Configuration stream based initialization, permits a simple "boot strap" procedure.
- Other Memories? FIFOs? Video "Frame Buffer"? How big?

 Spring 2011
 EECS150 - Lec11-proj2
 Page 37

XUP Board External SRAM

XUP Board External DRAM

