
Spring 2011 EECS150 - Lec21-counters Page

EECS150 - Digital Design
Lecture 21 - FSMs & Counters

April 8, 2010
John Wawrzynek

1

Spring 2010 EECS150 - Lec22-counters Page

State Encoding
• One-hot encoding of states.
• One FF per state.

• Why one-hot encoding?
– Simple design procedure.

• Circuit matches state transition diagram (example next page).
– Often can lead to simpler and faster “next state” and output logic.

• Why not do this?
– Can be costly in terms of FFs for FSMs with large number of states.

• FPGAs are “FF rich”, therefore one-hot state machine encoding is
often a good approach.

2

Spring 2010 EECS150 - Lec22-counters Page

One-hot encoded FSM
• Even Parity Checker Circuit:

• In General: • FFs must be initialized for
correct operation (only one 1)

Circuit generated
through direct
inspection of the STD.

3

Spring 2010 EECS150 - Lec22-counters Page

One-hot encoded combination lock

4

Spring 2010 EECS150 - Lec22-counters Page

FSM Implementation Notes
• General FSM form:

• All examples so far generate
output based only on the present
state:

• Commonly name Moore Machine
 (If output functions include both

present state and input then called
a Mealy Machine)

5

Spring 2010 EECS150 - Lec22-counters Page

Finite State Machines
• Example: Edge Detector
 Bit are received one at a time (one per cycle),
 such as: 000111010 time

 Design a circuit that asserts
 its output for one cycle when
 the input bit stream changes
 from 0 to 1.

 Try two different solutions.

FSM

CLK

IN OUT

6

Spring 2010 EECS150 - Lec22-counters Page

State Transition Diagram Solution A

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

7

Spring 2010 EECS150 - Lec22-counters Page

Solution A, circuit derivation

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

8

Spring 2010 EECS150 - Lec22-counters Page

Solution B
Output depends not only on PS but also on input, IN

IN PS NS OUT
 0 0 0 0
 0 1 0 0
 1 0 1 1
 1 1 1 0

Let ZERO=0,
 ONE=1

NS = IN, OUT = IN PS’

What’s the intuition about this solution?

9

Spring 2010 EECS150 - Lec22-counters Page

Edge detector timing diagrams

• Solution A: output follows the clock
• Solution B: output changes with input rising edge and is

asynchronous wrt the clock.

10

Spring 2010 EECS150 - Lec22-counters Page

FSM Comparison
Solution A

Moore Machine
• output function only of PS
• maybe more states (why?)
• synchronous outputs

– no glitches
– one cycle “delay”
– full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs

– if input glitches, so does output
– output immediately available
– output may not be stable long

enough to be useful (below):

If output of Mealy FSM
goes through combinational
logic before being
registered, the CL might
delay the signal and it could
be missed by the clock edge.

11

Spring 2010 EECS150 - Lec22-counters Page

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

12

Spring 2010 EECS150 - Lec22-counters Page

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy

style outputs. Nothing wrong with this, but you need to be
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be
achieved in a Mealy machine by “registering” the Mealy
output values:

13

Spring 2010 EECS150 - Lec22-counters Page

General FSM Design Process with Verilog
ImplementationDesign Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description

 Use parameters to represent encoded states.
 Use separate always blocks for register assignment and CL

logic block.
 Use case for CL block. Within each case section assign all

outputs and next state value based on inputs. Note: For
Moore style machine make outputs dependent only on state
not dependent on inputs.

14

Spring 2010 EECS150 - Lec22-counters Page

FSMs in Verilog

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: if (in) begin
 out = 1’b1;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 ONE: if (in) begin
 out = 1’b0;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 default: begin
 out = 1’bx;
 ns = default;
 end

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: begin
 out = 1’b0;
 if (in) ns = CHANGE;
 else ns = ZERO;
 end
 CHANGE: begin
 out = 1’b1;
 if (in) ns = ONE;
 else ns = ZERO;
 end
 ONE: begin
 out = 1’b0;
 if (in) ns = ONE;
 else ns = ZERO;
 default: begin
 out = 1’bx;
 ns = default;
 end

Mealy Machine Moore Machine

15

Spring 2011 EECS150 - Lec21-counters Page

Counters
• Special sequential circuits (FSMs) that repeatedly

sequence through a set of outputs.
• Examples:

– binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,
– gray code counter:
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, …
– one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, …
– BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001
– pseudo-random sequence generators: 10, 01, 00, 11, 10,

01, 00, ...
• Moore machines with “ring” structure in State

Transition Diagram:
S3

S0

S2

S1

16

Spring 2011 EECS150 - Lec21-counters Page

What are they used?
• Counters are commonly used in hardware designs because most (if

not all) computations that we put into hardware include iteration
(looping). Examples:
– Shift-and-add multiplication scheme.
– Bit serial communication circuits (must count one “words worth” of

serial bits.
• Other uses for counter:

– Clock divider circuits

– Systematic inspection of data-structures
• Example: Network packet parser/filter control.

• Counters simplify “controller” design by:
– providing a specific number of cycles of action,
– sometimes used with a decoder to generate a sequence of timed

control signals.
– Consider using a counter when many FSM states with few branches.

÷6416MHz

17

Spring 2011 EECS150 - Lec21-counters Page

Controller using Counters
• Example, Bit-serial multiplier (n2 cycles, one bit of result per n

cycles):

• Control Algorithm:
repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

18

Spring 2011 EECS150 - Lec21-counters Page

Controller using Counters
• State Transition Diagram:

– Assume presence of two
binary counters. An “i”
counter for the outer loop and
“j” counter for inner loop.

TC is asserted when the counter
reaches it maximum count value.
CE is “count enable”. The counter
increments its value on the rising
edge of the clock if CE is asserted.

19

Spring 2011 EECS150 - Lec21-counters Page

Controller using Counters
• Controller circuit

implementation:
• Outputs:

 CEi = q2

 CEj = q1

 RSTi = q0

 RSTj = q2

 shiftA = q1

 shiftB = q2

 shiftLOW = q2

 shiftHI = q1 + q2

 reset = q2

 selectSUM = q1

20

Spring 2011 EECS150 - Lec21-counters Page

How do we design counters?
• For binary counters (most common case) incrementer circuit would

work:

• In Verilog, a counter is specified as: x = x+1;
– This does not imply an adder
– An incrementer is simpler than an adder
– And a counter is simpler yet.

• In general, the best way to understand counter design is to think
of them as FSMs, and follow general procedure, however some
special cases can be optimized.

register

+
1

21

Spring 2011 EECS150 - Lec21-counters Page

Synchronous Counters

• Binary Counter Design:
 Start with 3-bit version and

generalize:

c b a c+ b+ a+

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

a+ = a’
b+ = a ⊕ b

 cb
a 00 01 11 10
 0 0 0 1 1
 1 0 1 0 1

c+ = a’c + abc’ + b’c
 = c(a’+b’) + c’(ab)
 = c(ab)’ + c’(ab)
 = c ⊕ ab

All outputs change with clock edge.

22

Spring 2011 EECS150 - Lec21-counters Page

Synchronous Counters
• How do we extend to n-bits?
• Extrapolate c+: d+ = d ⊕ abc, e+ = e ⊕ abcd

• Has difficulty scaling (AND gate inputs grow with n)

• CE is “count enable”, allows external control of counting,
• TC is “terminal count”, is asserted on highest value, allows

cascading, external sensing of occurrence of max value.

TC

23

Spring 2011 EECS150 - Lec21-counters Page

Synchronous Counters
TC

• How does this one scale?
 Delay grows α n

• Generation of TC signals very similar to
generation of carry signals in adder.

• “Parallel Prefix” circuit reduces delay:

log2n

log2n

24

Spring 2011 EECS150 - Lec21-counters Page

Up-Down Counter

c b a c+ b+ a+

0 0 0 1 1 1
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

Down-count

25

Spring 2011 EECS150 - Lec21-counters Page

Odd Counts
• Extra combinational logic can

be added to terminate count
before max value is reached:

• Example: count to 12

• Alternative:

26

Spring 2011 EECS150 - Lec21-counters Page

Ring Counters
• “one-hot” counters
0001, 0010, 0100, 1000, 0001, …

“Self-starting” version:

• What are these good for?

27

Spring 2011 EECS150 - Lec21-counters Page

Johnson Counter

28

Spring 2011 EECS150 - Lec21-counters Page

Asynchronous “Ripple” counters
A3 A2 A1 A0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

time

• Each stage is ÷2 of
previous.

• Look at output
waveforms:

• Often called
“asynchronous”
counters.

• A “T” flip-flop is a
“toggle” flip-flop.
Flips it state on
cycles when T=1.

CLK
A0

A1

A2

A3

29

Forbidden in
Synchronous
Design

