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EECS150 - Digital Design
Lecture 21 - FSMs & Counters

April 8, 2010
John Wawrzynek
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State Encoding
• One-hot encoding of states.
• One FF per state.

• Why one-hot encoding?
– Simple design procedure.

• Circuit matches state transition diagram (example next page).
– Often can lead to simpler and faster “next state” and output logic.

• Why not do this?
– Can be costly in terms of FFs for FSMs with large number of states.

• FPGAs are “FF rich”, therefore one-hot state machine encoding is 
often a good approach.  
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One-hot encoded FSM
• Even Parity Checker Circuit:

• In General: • FFs must be initialized for 
correct operation (only one 1)

Circuit generated 
through direct 
inspection of the STD.
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One-hot encoded combination lock
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FSM Implementation Notes
• General FSM form:

• All examples so far generate 
output based only on the present 
state:

• Commonly name Moore Machine
 (If output functions include both 

present state and input then called 
a Mealy Machine)
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Finite State Machines
• Example: Edge Detector
  Bit are received one at a time (one per cycle), 
  such as:   000111010  time

  
  Design a circuit that asserts
  its output for one cycle when 
  the input bit stream changes
  from 0 to 1.  
 
  Try two different solutions.

FSM

CLK

IN OUT
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State Transition Diagram Solution A

IN   PS    NS  OUT
 0    00     00    0
 1    00     01    0
 0    01     00    1
 1    01     11    1
 0    11     00    0
 1    11     11    0

ZERO

CHANGE

ONE
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Solution A, circuit derivation

IN   PS    NS  OUT
 0    00     00    0
 1    00     01    0
 0    01     00    1
 1    01     11    1
 0    11     00    0
 1    11     11    0

ZERO

CHANGE

ONE
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Solution B
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT
 0     0      0       0
 0     1      0       0
 1     0      1       1
 1     1      1       0

Let ZERO=0,
        ONE=1

NS = IN, OUT = IN PS’

What’s the intuition about this solution?
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Edge detector timing diagrams

• Solution A: output follows the clock
• Solution B: output changes with input rising edge and is 

asynchronous wrt the clock.
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FSM Comparison
Solution A

Moore Machine
• output function only of PS
• maybe more states (why?)
• synchronous outputs

– no glitches
– one cycle “delay”
– full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs

– if input glitches, so does output
– output immediately available
– output may not be stable long 

enough to be useful (below):

If output of Mealy FSM 
goes through combinational 
logic before being 
registered, the CL might 
delay the signal and it could 
be missed by the clock edge. 
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FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.
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Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy 

style outputs.  Nothing wrong with this, but you need to be 
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be 
achieved in a Mealy machine by “registering” the Mealy 
output values:
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General FSM Design Process with Verilog 
ImplementationDesign Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description

 Use parameters to represent encoded states.
 Use separate always blocks for register assignment and CL 

logic block.
 Use case for CL block.  Within each case section assign all 

outputs and next state value based on inputs.   Note:  For 
Moore style machine make outputs dependent only on state 
not dependent on inputs.  
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FSMs in Verilog

always @(posedge clk)  
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
    case (ps)
      ZERO: if (in) begin 
             out = 1’b1;
             ns = ONE;
           end
    else begin
      out = 1’b0;
      ns = ZERO;
    end
      ONE: if (in) begin
    out = 1’b0;
    ns = ONE;
   end
   else begin
     out = 1’b0;
     ns = ZERO;
   end
      default: begin 
       out = 1’bx; 
       ns = default; 
      end

always @(posedge clk)  
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
    case (ps)
      ZERO: begin
      out = 1’b0;
      if (in) ns = CHANGE;
                else ns = ZERO;
    end
      CHANGE: begin
       out = 1’b1;
       if (in) ns = ONE;
       else ns = ZERO;
      end
         ONE: begin
       out = 1’b0;
       if (in) ns = ONE;
       else ns = ZERO;
      default: begin 
       out = 1’bx; 
       ns = default; 
      end

Mealy Machine Moore Machine
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Counters
• Special sequential circuits (FSMs) that repeatedly 

sequence through a set of outputs.  
• Examples:

– binary counter:  000, 001, 010, 011, 100, 101, 110, 111, 000, 
– gray code counter: 
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, …
– one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, …
– BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001
– pseudo-random sequence generators:  10, 01, 00, 11, 10, 

01, 00, ...
• Moore machines with “ring” structure in State 

Transition Diagram: 
S3

S0

S2

S1
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What are they used?
• Counters are commonly used in hardware designs because most (if 

not all) computations that we put into hardware include iteration 
(looping).  Examples:
– Shift-and-add multiplication scheme.
– Bit serial communication circuits (must count one “words worth” of 

serial bits.
• Other uses for counter:

– Clock divider circuits

– Systematic inspection of data-structures
• Example: Network packet parser/filter control.

• Counters simplify “controller” design by:
– providing a specific number of cycles of action,
– sometimes used with a decoder to generate a sequence of timed 

control signals.
– Consider using a counter when many FSM states with few branches.

÷6416MHz
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Controller using Counters
• Example, Bit-serial multiplier (n2 cycles, one bit of result per n 

cycles):

• Control Algorithm:
repeat n cycles {  // outer (i) loop
 repeat n cycles{   // inner (j) loop
  shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1.  The absence
of x means x=0.
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Controller using Counters
• State Transition Diagram:

– Assume presence of two 
binary counters.  An “i” 
counter for the outer loop and 
“j” counter for inner loop.

TC is asserted when the counter 
reaches it maximum count value.
CE is “count enable”.  The  counter
increments its value on the rising 
edge of the clock if CE is asserted.
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Controller using Counters
• Controller circuit 

implementation:
• Outputs:
 
 CEi = q2

 CEj = q1

 RSTi = q0

 RSTj = q2

 shiftA = q1

 shiftB = q2

 shiftLOW = q2

 shiftHI = q1 + q2

 reset = q2

 selectSUM = q1

20



Spring 2011 EECS150 - Lec21-counters Page 

How do we design counters?
• For binary counters (most common case) incrementer circuit would 

work:

• In Verilog, a counter is specified as:  x = x+1;
– This does not imply an adder
– An incrementer is simpler than an adder
– And a counter is simpler yet.

• In general, the best way to understand counter design is to think 
of them as FSMs, and follow general procedure, however some 
special cases can be optimized.

register

+
1

21

Spring 2011 EECS150 - Lec21-counters Page 

Synchronous Counters

• Binary Counter Design:
 Start with 3-bit version and 

generalize:

c  b  a   c+ b+ a+

0  0  0   0  0  1
0  0  1   0  1  0
0  1  0   0  1  1
0  1  1   1  0  0
1  0  0   1  0  1
1  0  1   1  1  0
1  1  0   1  1  1
1  1  1   0  0  0

a+ = a’
b+ = a ⊕ b
 
  cb
a     00 01 11 10
    0  0  0   1   1
    1  0  1   0   1

c+ = a’c + abc’ + b’c
    = c(a’+b’) + c’(ab)
    = c(ab)’ + c’(ab)
    = c ⊕ ab

All outputs change with clock edge.
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Synchronous Counters
• How do we extend to n-bits?
• Extrapolate c+:  d+ = d ⊕ abc,  e+ = e ⊕ abcd

• Has difficulty scaling (AND gate inputs grow with n)

• CE is “count enable”, allows external control of counting, 
• TC is “terminal count”, is asserted on highest value, allows 

cascading, external sensing of occurrence of max value.

TC
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Synchronous Counters
TC

• How does this one scale?
 Delay grows α n

• Generation of TC signals very similar to 
generation of carry signals in adder.  

• “Parallel Prefix” circuit reduces delay: 

log2n

log2n
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Up-Down Counter

c  b  a   c+ b+ a+

0  0  0   1  1  1
0  0  1   0  0  0
0  1  0   0  0  1
0  1  1   0  1  0
1  0  0   0  1  1
1  0  1   1  0  0
1  1  0   1  0  1
1  1  1   1  1  0

Down-count
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Odd Counts
• Extra combinational logic can 

be added to terminate count 
before max value is reached:

• Example: count to 12

• Alternative:
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Ring Counters
• “one-hot” counters
0001, 0010, 0100, 1000, 0001, …

“Self-starting” version:

• What are these good for?
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Johnson Counter
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Asynchronous “Ripple” counters
A3 A2 A1 A0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

time

• Each stage is ÷2 of 
previous.

• Look at output 
waveforms:

• Often called 
“asynchronous” 
counters.

• A “T” flip-flop is a 
“toggle” flip-flop.  
Flips it state on 
cycles when T=1.

CLK
A0

A1

A2

A3
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