
Spring 2011 EECS150 - Lec23-arith1 Page

EECS150 - Digital Design
Lecture 22 - Arithmetic Blocks,

Part 1

April 10, 2011
John Wawrzynek

1

Spring 2010 EECS150 - Lec23-arith1 Page

Carry-ripple Adder Revisited
• Each cell:

ri = ai XOR bi XOR cin

cout = aicin + aibi + bicin = cin(ai + bi) + aibi

• 4-bit adder:

• What about subtraction?

“Full adder cell”

2

Spring 2010 EECS150 - Lec23-arith1 Page

Subtractor
A - B = A + (-B)

 How do we form -B?
 1. complement B
 2. add 1

3

Spring 2010 EECS150 - Lec23-arith1 Page

Delay in Ripple Adders
• Ripple delay amount is a function of the data inputs:

• However, we usually only consider the worst case delay on the critical path. There is
usually at least one set of input data that exposes the worst case delay.

1 0 0 1 0 11 0

0 0 0 0

1 0 1 0 1 11 0

0 0 0 0

1 0 1 0 1 11 0

0 0 0 1

1 0 1 0 1 11 0

0 0 1 1

t0

t1

t2

t3

4

Spring 2010 EECS150 - Lec23-arith1 Page

Adders (cont.)

Ripple Adder

Ripple adder is inherently slow because, in general
s7 must wait for c7 which must wait for c6 …

 T α n, Cost α n

How do we make it faster, perhaps with more cost?

5

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Select Adder

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n/2 + 1) * COSTMUX

6

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Select Adder

• Extending Carry-select to multiple blocks

• What is the optimal # of blocks and # of bits/block?
– If # blocks too large delay dominated by total mux delay
– If # blocks too small delay dominated by adder delay

T α sqrt(N),
Cost ≈2*ripple + muxes

7

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Select Adder

• Compare to ripple adder delay:
Ttotal = 2 sqrt(N) TFA – TFA, assuming TFA = TMUX

For ripple adder Ttotal = N TFA

“cross-over” at N=3, Carry select faster for any value of N>3.
• Is sqrt(N) really the optimum?

– From right to left increase size of each block to better match delays
– Ex: 64-bit adder, use block sizes [12 11 10 9 8 7 7]

• How about recursively defined carry select?
8

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Look-ahead Adders
• In general, for n-bit addition best we can achieve is

 delay α log(n)
• How do we arrange this? (think trees)
• First, reformulate basic adder stage:

carry “kill”

carry “propagate”

carry “generate”
ci+1 = gi + pici
si = pi ⊕ ci

a b ci ci+1 s

9

ki = ai’ bi’

pi = ai ⊕ bi

gi = ai bi

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Look-ahead Adders
• Ripple adder using p and g signals:

• So far, no advantage over ripple adder: T α N

p0
g0

s0 = p0 ⊕ c0
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s0 = p1 ⊕ c1
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 ⊕ c2
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 ⊕ c3
c4 = g3 + p3c3

s3
a3
b3

c0

c4

pi = ai ⊕ bi
gi = ai bi

10

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Look-ahead Adders
• Expand carries:

c0

c1 = g0 + p0 c0

c2 = g1 + p1c1 = g1 + p1g0 + p1p0c0

c3 = g2 + p2c2 = g2 + p2g1 + p1p2g0 + p2p1p0c0

c4 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + . . .
 .
 .
 .

• Why not implement these equations directly to avoid
ripple delay?
– Lots of gates. Redundancies (full tree for each).
– Gate with high # of inputs.

• Let’s reorganize the equations.
11

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Look-ahead Adders
• “Group” propagate and generate signals:

• P true if the group as a whole propagates a carry to cout

• G true if the group as a whole generates a carry

• Group P and G can be generated hierarchically.

pi
gi

pi+1
gi+1

pi+k
gi+k

P = pi pi+1 … pi+k

G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

cout = G + Pcin

12

Spring 2010 EECS150 - Lec23-arith1 Page

Carry Look-ahead Adders
a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically
generated P and G signals:

13

Spring 2011 EECS150 - Lec23-arith1 Page

c0

a0b0
s0

a1b1
s1

c1

a2
b2

s2

a3b3
s3

c3

c2

c0

c0

a4b4
s4

a5b5
s5

c5

a6b6
s6

a7b7
s7

c7

c6

c0

c4

c0

c8

p,g

P,G

P,G

cin

cout

P,G
Pa,Ga

Pb,Gb

P = PaPb
G = Gb + GaPb

Cout = G + cinP

aibi
si

p,g

ci

ci+1

p = a ⊕ b
g = ab

s = p ⊕ ci

ci+1 = g + cip

8-bit Carry Look-
ahead Adder

14

Spring 2011 EECS150 - Lec23-arith1 Page

p0
g0s0

p1
g1s1

c1= g0+p0c0

p1
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c0

c4

c8

8-bit Carry Look-ahead
Adder with 2-input gates.

15

Spring 2011 EECS150 - Lec23-arith1 Page

Carry look-ahead Wrap-up
• Adder delay O(logN) (up then down the tree).
• Cost? Energy per add?
• Can be applied with other techniques. Group P & G

signals can be generated for sub-adders, but another
carry propagation technique (for instance ripple) used
within the group.
– For instance on FPGA. Ripple carry up to 32 bits is fast

(1.25ns), CLA used to extend to large adders. CLA tree
quickly generates carry-in for upper blocks.

• Other more complex techniques exist that can bring
the delay down below O(logN), but are only efficient
for very wide adders.

16

Spring 2010 EECS150 - Lec23-arith1 Page

Bit-serial Adder

• Addition of 2 n-bit numbers:
– takes n clock cycles,
– uses 1 FF, 1 FA cell, plus registers
– the bit streams may come from or go to other circuits, therefore the

registers might not be needed.

• A, B, and R held in shift-registers.
Shift right once per clock cycle.

• Reset is asserted by controller.

17

Spring 2010 EECS150 - Lec23-arith1 Page

Adders on the Xilinx Virtex-5

• Dedicated carry
logic provides fast
arithmetic carry
capability for high-
speed arithmetic
functions.

• Cin to Cout (per
bit) delay = 40ps,
versus 900ns for F
to X delay.

• 64-bit add delay =
2.5ns.

174 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Each CLB can contain zero or one SLICEM. Every other CLB column contains a SLICEMs.
In addition, the two CLB columns to the left of the DSP48E columns both contain a SLICEL
and a SLICEM.

Figure 5-4: Diagram of SLICEL

A6
LUT
ROM

COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG190_5_04_032606

A5
A4
A3
A2
A1

D6

DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

DX

D5
D4
D3
D2
D1

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CIN

0/1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

C6

CX

C5
C4
C3
C2
C1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

B6

BX

B5
B4
B3
B2
B1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

A6

AX
SR
CE

CLK

A5
A4
A3
A2
A1

Q

Q

Q

Reset Type

Sync

Async

18

Virtex-5 FPGA User Guide www.xilinx.com 197
UG190 (v4.2) May 9, 2008

CLB Overview
R

carry multiplexer (MUXCY) can also be used to cascade function generators for
implementing wide logic functions.

Figure 5-24 illustrates the carry chain with associated logic elements in a slice.

The carry chains carry lookahead logic along with the function generators. There are ten
independent inputs (S inputs – S0 to S3, DI inputs – DI1 to DI4, CYINIT and CIN) and eight
independent outputs (O outputs – O0 to O3, and CO outputs – CO0 to CO3).

The S inputs are used for the “propagate” signals of the carry lookahead logic. The
“propagate” signals are sourced from the O6 output of a function generator. The DI inputs
are used for the “generate” signals of the carry lookahead logic. The “generate” signals are
sourced from either the O5 output of a function generator or the BYPASS input (AX, BX,
CX, or DX) of a slice. The former input is used to create a multiplier, while the latter is used

Figure 5-24: Fast Carry Logic Path and Associated Elements

UG190_5_24_050506

O6 From LUTD

DMUX/DQ*

DMUX

DQ
O5 From LUTD

DX

S3
MUXCY

DI3

CO3

O3

COUT (To Next Slice)

Carry Chain Block
(CARRY4)

(Optional)

D Q

O6 From LUTC

CMUX/CQ*

CMUX

CQ
O5 From LUTC

CX

S2
MUXCY

DI2

CO2

CO1

CO0

O2

(Optional)

D Q

O6 From LUTB

BMUX/BQ*

BMUX

BQ
O5 From LUTB

BX

S1
MUXCY

DI1

O1

(Optional)

D Q

O6 From LUTA

AMUX/AQ*

AMUX

AQ
O5 From LUTA

AX

S0
MUXCY

DI0

CIN

CIN (From Previous Slice)

* Can be used if
unregistered/registered
outputs are free.

CYINIT

10

O0

(Optional)

D Q

We can map
ripple-carry addition onto

carry-chain block.

The carry-chain block also useful
for speeding up other adder

structures and counters.

Virtex 5 Vertical Logic

cout = pi cin + ai bi
cout = pi ? cin : ai
pi = ai xor bi

a b ci ci+1 s

a0

a1

a2

a3

p0

p1

p2

p3

p

Spring 2009 EECS150 - Lec03-FPGA Page

Adder Final Words

• Dynamic energy per addition for all of these is O(n).

• “O” notation hides the constants. Watch out for this!

• The cost of the carry-select is at least 2X the cost of the ripple.
Cost of the CLA is probably at least 2X the cost of the carry-select.

• The actual multiplicative constants depend on the implementation
details and technology.

• FPGA and ASIC synthesis tools will try to choose the best adder
architecture automatically

– assuming you specify addition using the “+” operator, as in
“assign A = B + C”

Type Cost Delay

Ripple O(N) O(N)

Carry-select O(N) O(sqrt(N))

Carry-lookahead O(N) O(log(N))

20

