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 CS152 
Computer Architecture and Engineering 

 

  
Complex Pipelines 

 

Assigned March 9 Problem Set #3 Due March 18 
 

http://inst.eecs.berkeley.edu/~cs152/sp10 
 

The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in his own solution to the problems. 
The problem sets also provide essential background material for the quizzes. The problem sets 
will be graded primarily on an effort basis, but if you do not work through the problem sets you 
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 
the problem sets are due to give you feedback.  Homework assignments are due at the beginning 
of class on the due date.  Late homework will not be accepted. 
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Problem 3.1: Superscalar Processor  
 
Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features: 

o Four fully-pipelined functional units: ALU, MEM, FADD, FMUL 
o Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the 

ROB (assume perfect branch prediction and no cache misses) 
o An unbounded length Reorder Buffer that can perform the following operations on every 

cycle: 
o Accept two instructions from the Instruction Fetch and Decode Unit 
o Dispatch an instruction to each functional unit including Data Memory 
o Let Writeback update an unlimited number of entries 
o Commit up to 2 instructions in-order 

o There is no bypassing or short circuiting. For example, data entering the ROB cannot be 
passed on to the functional units or committed in the same cycle. 
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Now consider the execution of the following program on this machine using: 
I1 loop: LD F2, 0(R2) 
I2  LD F3, 0(R3) 
I3  FMUL F4, F2, F3 
I4  LD F2, 4(R2) 
I5  LD F3, 4(R3) 
I6  FMUL F5, F2, F3 
I7  FMUL F6, F4, F5 
I8  FADD F4, F4, F5 
I9  FMUL F6, F4, F5 
I10  FADD F1, F1, F6 
I11  ADD R2, R2, 8 
I12  ADD R3, R3, 8 
I13  ADD R4, R4, -1 
I14  BNEZ R4, loop 

 
 
Problem 3.1.A  

 
Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10. 
Tags should not be reused. 
 

Instr # Instruction Dest Src1 Src2 
I1 LD F2, 0(R2) T1 R2 0 
I2 LD F3, 0(R3) T2 R3 0 
I3 FMUL F4, F2, F3    
I4 LD F2, 4(R2)  R2 4 
I5 LD F3, 4(R3)  R3 4 
I6 FMUL F5, F2, F3    
I7 FMUL F6, F4, F5    
I8 FADD F4, F4, F5    
I9 FMUL F6, F4, F5    
I10 FADD F1, F1, F6  F1  

 
Renaming table 
 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 
R2           
R3           
F1           
F2 T1          
F3  T2         
F4           
F5           
F6           
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Problem 3.1.B  
 
Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the 
data dependencies between the instructions after register renaming 
 
 

 
 
 
 
Problem 4.1.C  

 
The attached table is a data structure to record the times when some activity takes place in the 
ROB. For example, one column records the time when an instruction enters ROB, while the last 
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the 
time when results are written back to the ROB. This data structure has been designed to test your 
understanding of how a Superscalar machine functions.  
 
Fill in the blanks in last two columns up to slot T13 (You may use the source columns for book 
keeping – no credit will be taken off for the wrong entries there).  
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Argument 1 Argument 2 dst  

Slot 
 

Instruction 
Cycle 

instruction 
entered 
ROB 

src1 cycle 
available 

Src2 cycle 
available 

dst reg 
Cycle 
dispatched 

Cycle 
written 
back to 
ROB 

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6 
T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7 
T3 FMUL F4, F2, F3 2   F3 7 F4   
T4 LD F2, 4(R2) 2 C 2 R2  F2   
T5 LD F3, 4(R3) 3 C 3 R3  F3   
T6 FMUL F5, F2, F3 3     F5   
T7 FMUL F6, F4, F5 4     F6   
T8 FADD F4, F4, F5 4     F4   
T9 FMUL F6, F4, F5 5     F6   

T10 FADD F1, F1, F6 5     F1   
T11 ADD R2, R2, 8 6 R2 6 C 6 R2   
T12 ADD R3, R3, 8 6 R3 6 C 6 R3   
T13 ADD R4, R4, -1 7 R4 7 C 7 R4   
T14 BNEZ R4, loop 7   C Loop    
T15 LD F2, 0(R2) 8 C 8   F2 10 14 
T16 LD F3, 0(R3) 8 C 8   F3 11 15 
T17 FMUL F4, F2, F3 9     F4   
T18 LD F2, 4(R2) 9 C 9   F2   
T19 LD F3, 4(R3) 10 C 10   F3   
T20 FMUL F5, F2, F3 10     F5   
T21 FMUL F6, F4, F5 11     F6   
T22 FADD F4, F4, F5 11     F4   
T23 FMUL F6, F4, F5 12     F6   
T24 FADD F1, F1, F6 12     F1   
T25 ADD R2, R2, 8 13   C 13 R2   
T26 ADD R3, R3, 8 13   C 13 R3   
T27 ADD R4, R4, -1 14   C 14 R4   
T28 BNEZ R4, loop 14   C  Loop    
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Problem 3.1.D  
 
Identify the instructions along the longest latency path in completing this iteration of the 
loop (up to instruction 13).  Suppose we consider an instruction to have executed when its 
result is available in the ROB. How many cycles does this iteration take to execute?  
 
 
 
 
 
 
Problem 3.1.E  

 
Do you expect the same behavior, i.e., the same dependencies and the same number of 
cycles, for the next iteration? (You may use the slots from T15 onwards in the attached 
diagram for bookkeeping to answer this question). Please give a simple reason why the 
behavior may repeat, or identify a resource bottleneck or dependency that may preclude 
the repetition of the behavior. 
 
 
 
 
 
 
 
Problem 3.1.F  

 
Can you improve the performance by adding at most one additional memory port and a 
FP Multiplier? Explain briefly. 
 
Yes / No  
 
 
 
Problem 3.1.G  

 
What is the minimum number of cycles needed to execute a typical iteration of this loop 
if we keep the same latencies for all the units but are allowed to use as many FUs and 
memory ports and are allowed to fetch and commit as many instructions as we want. 
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 Problem 3.2: Register Renaming and Static vs. Dynamic Scheduling  
 
The following MIPS code calculates the floating-point expression E = A * B + C * D, 
where the addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, 
respectively: 
 

L.S F0, 0(R1) 
L.S F1, 0(R2) 
MUL.S F0, F0, F1 
L.S F2, 0(R3) 
L.S F3, 0(R4) 
MUL.S F2, F2, F3 
ADD.S F0, F0, F2 
S.S F0, 0(R5) 

 

 

Problem 3.2.A Simple Pipeline 
 
Calculate the number of cycles this code sequence would take to execute (i.e., the number 
of cycles between the issue of the first load instruction and the issue of the final store, 
inclusive) on a simple in-order pipelined machine that has no bypassing.  The datapath 
includes a load/store unit, a floating-point adder, and a floating-point multiplier.  Assume 
that loads have a two-cycle latency, floating-point multiplication has a four-cycle latency 
and floating-point addition has a two-cycle latency. Write-back for floating-point 
registers takes one cycle.  Also assume that all functional units are fully pipelined and 
ignore any write back conflicts.  Give the number of cycles between the issue of the first 
load instruction and the issue of the final store, inclusive. 
 

 

Problem 3.2.B Static Scheduling 
 
Reorder the instructions in the code sequence to minimize the execution time.  Show the 
new instruction sequence and give the number of cycles this sequence takes to execute on 
the simple in-order pipeline. 
 

 

Problem 3.2.C Fewer Registers 
 
Rewrite the code sequence, but now using only two floating-point registers.  Optimize for 
minimum run-time.  You may need to use temporary memory locations to hold 
intermediate values (this process is called register-spilling when done by a compiler).  
List the code sequence and give the number of cycles this takes to execute. 
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Problem 3.2.D Register renaming and dynamic scheduling 

Calculate the effect of running the original code on a single-issue machine with register 
renaming and out-of-order issue. Ignore structural hazards apart from the single 
instruction decode per cycle. Show how the code is executed and give the number of 
cycles required. Compare it with results from optimized execution in 3.2.B. 
 
 
Problem 3.2E Effect of Register Spills 

Now calculate the effect of running code you wrote in 3.2.C on the single-issue machine 
with register renaming and out-of-order issue from 3.3.D. Compare the number of cycles 
required to execute the program. What are the differences in the program and/or 
architecture that change the number of cycles required to execute the program?  You 
should assume that all load instructions before a store must issue before the store is 
issued, and load instructions after a store must wait for the store to issue. 
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Problem 3.3: Branch Prediction 
 
This problem will investigate the effects of adding global history bits to a standard branch 
prediction mechanism. In this problem assume that the MIPS ISA has no delay slots. 
 
Throughout this problem we will be working with the following program: 
 
loop: 

LW R4, 0(R3) 
 ADDI R3, R3, 4 
 SUBI R1, R1, 1 
b1:  

BEQZ R4, b2 
 ADDI R2, R2, 1 
b2:   

BNEZ R1, loop 
 
Assume the initial value of R1 is n (n>0). 
Assume the initial value of R2 is 0 (R2 holds the result of the program). 
Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit 
integers). 
 
All branch prediction schemes in this problem will be based on those covered in lecture.  
We will be using a 2-bit predictor state machine, as shown below. 
 

00 10

01

11
taken taken

taken

taken
taken

taken
taken

taken

 
 

Figure 3.3-A. BP bits state diagram 
 

In state 1X we will guess not taken. In state 0X we will guess taken. 
 
Assume that b1 and b2 do not conflict in the BHT. 
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Problem 3.3.A Program 
 
What does the program compute? That is, what does R2 contain when we exit the loop? 
 
Problem 3.3.B 2-bit branch prediction 

 
Now we will investigate how well our standard 2-bit branch predictor performs. Assume 
the inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc.; i.e. the 
array elements exhibit an alternating pattern of 1's and 0's. Fill out Table 3.3-1 (note that 
the first few lines are filled out for you). What is the number of mispredicts? 
 
Table 3.3-1 contains an entry for every branch (either b1 or b2) that is executed. The 
Branch Predictor (BP) bits in the table are the bits from the BHT.  For each branch, check 
the corresponding BP bits (indicated by the bold entries in the examples) to make a 
prediction, then update the BP bits in the following entry (indicated by the italic entries in 
the examples). 
 
 
Problem 3.3.C Branch prediction with one global history bit 

 
Now we add a global history bit to the branch predictor, as described in lecture. Fill out 
Table 3.3-2, and again give the total number of mispredicts you get when running the 
program with the same inputs. 
 
 
Problem 3.3.D Branch prediction with two global history bits 

 
Now we add a second global history bit.  Fill out Table 3.3-3. Again, compute the 
number of mispredicts you get for the same input. 
 
Problem 3.3.E Analysis I 

 
Compare your results from problems 3.3.B, 3.3.C, and 3.3.D. When do most of the 
mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What 
does this tell you about global history bits in general? For large n, what prediction 
scheme will work best? Explain briefly. 
 
Problem 3.3.F Analysis II 

 
The input we worked with in this problem is quite regular. How would you expect things 
to change if the input were random (each array element were equally probable 0 or 1). Of 
the three branch predictors we looked at in this problem, which one will perform best for 
this type of input? Is your answer the same for large and small n? 
 
What does this tell you about when additional history bits are useful and when they hurt 
you? 
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System 
State 

Branch Predictor Branch Behavior 

PC R3/R4 b1 bits b2 bits Predicted Actual 

b1 4/1 10 10 N N 
b2 4/1 10 10 N T 
b1 8/0 10 11 N T 
b2 8/0 11 11 N T 
b1 12/1 11 00   
b2 12/1     
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      
b1      
b2      

Table 3.3-1 
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System 
State 

Branch Predictor Behavior 

PC R3/R4 history b1 bits b2 bits   
  bit set 0 set 1 set 0 set 1 Predicted Actual 

b1 4/1 1 10 10 10 10 N N 
b2 4/1 0 10 10 10 10 N T 
b1 8/0 1 10 10 11 10   
b2 8/0        
b1 12/1        
b2 12/1        
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         
b1         
b2         

Table 3.3-2 
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System 
State 

Branch Predictor Behavior 
 

PC R3/R4 history b1 bits b2 bits   
  bits set 00 set 01 set 10 set 11 set 00 set 01 set 10 set 11 Predicted Actual 

b1 4/1 11 10 10 10 10 10 10 10 10 N N 
b2 4/1 01 10 10 10 10 10 10 10 10 N T 
b1 8/0 10 10 10 10 10 10 11 10 10   
b2 8/0            
b1 12/1            
b2 12/1            
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             
b1             
b2             

Table 3.3-3 
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Problem 3.4: Importance of Features  
 
For the following snippets of code, select the single architectural feature that will most 
improve the performance of the code. Explain your choice, including description of why 
the other features will not improve performance as much and your assumptions about the 
machine design. The features you have to choose from are: out-of-order issue with 
renaming, branch prediction, and superscalar execution. Loads are marked whether they 
hit or miss in the cache.  
 
Problem 3.4.A  

 ADD.D F0, F1, F8 
ADD.D F2, F3, F8 
ADD.D F4, F5, F8 
ADD.D F6, F7, F8 

Circle one: 
• Out-of-Order Issue with Renaming 
• Branch Prediction 
• Superscalar 

 
 

Problem 3.4.B  

loop: ADD R3 R4 R0 
   LD R4, 8(R4) # cache hit 
   BNEQZ R4, LOOP 

Circle one: 
• Out-of-Order Issue with Renaming 
• Branch Prediction 
• Superscalar 
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Problem Q3.3.C  

LD  R1 0(R2) # cache miss 
ADD R2 R1 R1 
LD  R1 0(R3) # cache hit 
LD  R3 0(R4)  # cache hit 
ADD R3 R1 R3 
ADD R1 R2 R3 
 
Circle one: 

• Out-of-Order Issue with Renaming 
• Branch Prediction 
• Superscalar 

 

 

 


