

 1

 CS152
Computer Architecture and Engineering

Complex Pipelines

Assigned March 9 Problem Set #3 Due March 18

http://inst.eecs.berkeley.edu/~cs152/sp10

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in his own solution to the problems.
The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an effort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Late homework will not be accepted.

 2

Problem 3.1: Superscalar Processor

Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features:

o Four fully-pipelined functional units: ALU, MEM, FADD, FMUL
o Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the

ROB (assume perfect branch prediction and no cache misses)
o An unbounded length Reorder Buffer that can perform the following operations on every

cycle:
o Accept two instructions from the Instruction Fetch and Decode Unit
o Dispatch an instruction to each functional unit including Data Memory
o Let Writeback update an unlimited number of entries
o Commit up to 2 instructions in-order

o There is no bypassing or short circuiting. For example, data entering the ROB cannot be
passed on to the functional units or committed in the same cycle.

.

Instruction
Queue

ROB

(infinite)

2 Instr per
cycle

ALU

FADD

+ Data
Mem

FMUL

Regfile

Issue as
many as
possible

Writeback as many
as possible

Commit at
most 2 instr

per cycle

 3

Now consider the execution of the following program on this machine using:
I1 loop: LD F2, 0(R2)
I2 LD F3, 0(R3)
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2)
I5 LD F3, 4(R3)
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6
I11 ADD R2, R2, 8
I12 ADD R3, R3, 8
I13 ADD R4, R4, -1
I14 BNEZ R4, loop

Problem 3.1.A

Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10.
Tags should not be reused.

Instr # Instruction Dest Src1 Src2
I1 LD F2, 0(R2) T1 R2 0
I2 LD F3, 0(R3) T2 R3 0
I3 FMUL F4, F2, F3
I4 LD F2, 4(R2) R2 4
I5 LD F3, 4(R3) R3 4
I6 FMUL F5, F2, F3
I7 FMUL F6, F4, F5
I8 FADD F4, F4, F5
I9 FMUL F6, F4, F5
I10 FADD F1, F1, F6 F1

Renaming table

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
R2
R3
F1
F2 T1
F3 T2
F4
F5
F6

 4

Problem 3.1.B

Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the
data dependencies between the instructions after register renaming

Problem 4.1.C

The attached table is a data structure to record the times when some activity takes place in the
ROB. For example, one column records the time when an instruction enters ROB, while the last
two columns record, respectively, the time when an instruction is dispatched to the FU’s and the
time when results are written back to the ROB. This data structure has been designed to test your
understanding of how a Superscalar machine functions.

Fill in the blanks in last two columns up to slot T13 (You may use the source columns for book
keeping – no credit will be taken off for the wrong entries there).

 5

Argument 1 Argument 2 dst

Slot

Instruction
Cycle

instruction
entered
ROB

src1 cycle
available

Src2 cycle
available

dst reg
Cycle
dispatched

Cycle
written
back to
ROB

T1 LD F2, 0(R2) 1 C 1 R2 1 F2 2 6
T2 LD F3, 0(R3) 1 C 1 R3 1 F3 3 7
T3 FMUL F4, F2, F3 2 F3 7 F4
T4 LD F2, 4(R2) 2 C 2 R2 F2
T5 LD F3, 4(R3) 3 C 3 R3 F3
T6 FMUL F5, F2, F3 3 F5
T7 FMUL F6, F4, F5 4 F6
T8 FADD F4, F4, F5 4 F4
T9 FMUL F6, F4, F5 5 F6

T10 FADD F1, F1, F6 5 F1
T11 ADD R2, R2, 8 6 R2 6 C 6 R2
T12 ADD R3, R3, 8 6 R3 6 C 6 R3
T13 ADD R4, R4, -1 7 R4 7 C 7 R4
T14 BNEZ R4, loop 7 C Loop
T15 LD F2, 0(R2) 8 C 8 F2 10 14
T16 LD F3, 0(R3) 8 C 8 F3 11 15
T17 FMUL F4, F2, F3 9 F4
T18 LD F2, 4(R2) 9 C 9 F2
T19 LD F3, 4(R3) 10 C 10 F3
T20 FMUL F5, F2, F3 10 F5
T21 FMUL F6, F4, F5 11 F6
T22 FADD F4, F4, F5 11 F4
T23 FMUL F6, F4, F5 12 F6
T24 FADD F1, F1, F6 12 F1
T25 ADD R2, R2, 8 13 C 13 R2
T26 ADD R3, R3, 8 13 C 13 R3
T27 ADD R4, R4, -1 14 C 14 R4
T28 BNEZ R4, loop 14 C Loop

 6

Problem 3.1.D

Identify the instructions along the longest latency path in completing this iteration of the
loop (up to instruction 13). Suppose we consider an instruction to have executed when its
result is available in the ROB. How many cycles does this iteration take to execute?

Problem 3.1.E

Do you expect the same behavior, i.e., the same dependencies and the same number of
cycles, for the next iteration? (You may use the slots from T15 onwards in the attached
diagram for bookkeeping to answer this question). Please give a simple reason why the
behavior may repeat, or identify a resource bottleneck or dependency that may preclude
the repetition of the behavior.

Problem 3.1.F

Can you improve the performance by adding at most one additional memory port and a
FP Multiplier? Explain briefly.

Yes / No

Problem 3.1.G

What is the minimum number of cycles needed to execute a typical iteration of this loop
if we keep the same latencies for all the units but are allowed to use as many FUs and
memory ports and are allowed to fetch and commit as many instructions as we want.

 7

 Problem 3.2: Register Renaming and Static vs. Dynamic Scheduling

The following MIPS code calculates the floating-point expression E = A * B + C * D,
where the addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5,
respectively:

L.S F0, 0(R1)
L.S F1, 0(R2)
MUL.S F0, F0, F1
L.S F2, 0(R3)
L.S F3, 0(R4)
MUL.S F2, F2, F3
ADD.S F0, F0, F2
S.S F0, 0(R5)

Problem 3.2.A Simple Pipeline

Calculate the number of cycles this code sequence would take to execute (i.e., the number
of cycles between the issue of the first load instruction and the issue of the final store,
inclusive) on a simple in-order pipelined machine that has no bypassing. The datapath
includes a load/store unit, a floating-point adder, and a floating-point multiplier. Assume
that loads have a two-cycle latency, floating-point multiplication has a four-cycle latency
and floating-point addition has a two-cycle latency. Write-back for floating-point
registers takes one cycle. Also assume that all functional units are fully pipelined and
ignore any write back conflicts. Give the number of cycles between the issue of the first
load instruction and the issue of the final store, inclusive.

Problem 3.2.B Static Scheduling

Reorder the instructions in the code sequence to minimize the execution time. Show the
new instruction sequence and give the number of cycles this sequence takes to execute on
the simple in-order pipeline.

Problem 3.2.C Fewer Registers

Rewrite the code sequence, but now using only two floating-point registers. Optimize for
minimum run-time. You may need to use temporary memory locations to hold
intermediate values (this process is called register-spilling when done by a compiler).
List the code sequence and give the number of cycles this takes to execute.

 8

Problem 3.2.D Register renaming and dynamic scheduling

Calculate the effect of running the original code on a single-issue machine with register
renaming and out-of-order issue. Ignore structural hazards apart from the single
instruction decode per cycle. Show how the code is executed and give the number of
cycles required. Compare it with results from optimized execution in 3.2.B.

Problem 3.2E Effect of Register Spills

Now calculate the effect of running code you wrote in 3.2.C on the single-issue machine
with register renaming and out-of-order issue from 3.3.D. Compare the number of cycles
required to execute the program. What are the differences in the program and/or
architecture that change the number of cycles required to execute the program? You
should assume that all load instructions before a store must issue before the store is
issued, and load instructions after a store must wait for the store to issue.

 9

Problem 3.3: Branch Prediction

This problem will investigate the effects of adding global history bits to a standard branch
prediction mechanism. In this problem assume that the MIPS ISA has no delay slots.

Throughout this problem we will be working with the following program:

loop:

LW R4, 0(R3)
 ADDI R3, R3, 4
 SUBI R1, R1, 1
b1:

BEQZ R4, b2
 ADDI R2, R2, 1
b2:

BNEZ R1, loop

Assume the initial value of R1 is n (n>0).
Assume the initial value of R2 is 0 (R2 holds the result of the program).
Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit
integers).

All branch prediction schemes in this problem will be based on those covered in lecture.
We will be using a 2-bit predictor state machine, as shown below.

00 10

01

11
taken taken

taken

taken
taken

taken
taken

taken

Figure 3.3-A. BP bits state diagram

In state 1X we will guess not taken. In state 0X we will guess taken.

Assume that b1 and b2 do not conflict in the BHT.

 10

Problem 3.3.A Program

What does the program compute? That is, what does R2 contain when we exit the loop?

Problem 3.3.B 2-bit branch prediction

Now we will investigate how well our standard 2-bit branch predictor performs. Assume
the inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc.; i.e. the
array elements exhibit an alternating pattern of 1's and 0's. Fill out Table 3.3-1 (note that
the first few lines are filled out for you). What is the number of mispredicts?

Table 3.3-1 contains an entry for every branch (either b1 or b2) that is executed. The
Branch Predictor (BP) bits in the table are the bits from the BHT. For each branch, check
the corresponding BP bits (indicated by the bold entries in the examples) to make a
prediction, then update the BP bits in the following entry (indicated by the italic entries in
the examples).

Problem 3.3.C Branch prediction with one global history bit

Now we add a global history bit to the branch predictor, as described in lecture. Fill out
Table 3.3-2, and again give the total number of mispredicts you get when running the
program with the same inputs.

Problem 3.3.D Branch prediction with two global history bits

Now we add a second global history bit. Fill out Table 3.3-3. Again, compute the
number of mispredicts you get for the same input.

Problem 3.3.E Analysis I

Compare your results from problems 3.3.B, 3.3.C, and 3.3.D. When do most of the
mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What
does this tell you about global history bits in general? For large n, what prediction
scheme will work best? Explain briefly.

Problem 3.3.F Analysis II

The input we worked with in this problem is quite regular. How would you expect things
to change if the input were random (each array element were equally probable 0 or 1). Of
the three branch predictors we looked at in this problem, which one will perform best for
this type of input? Is your answer the same for large and small n?

What does this tell you about when additional history bits are useful and when they hurt
you?

 11

System
State

Branch Predictor Branch Behavior

PC R3/R4 b1 bits b2 bits Predicted Actual

b1 4/1 10 10 N N
b2 4/1 10 10 N T
b1 8/0 10 11 N T
b2 8/0 11 11 N T
b1 12/1 11 00
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table 3.3-1

 12

System
State

Branch Predictor Behavior

PC R3/R4 history b1 bits b2 bits
 bit set 0 set 1 set 0 set 1 Predicted Actual

b1 4/1 1 10 10 10 10 N N
b2 4/1 0 10 10 10 10 N T
b1 8/0 1 10 10 11 10
b2 8/0
b1 12/1
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table 3.3-2

 13

System
State

Branch Predictor Behavior

PC R3/R4 history b1 bits b2 bits
 bits set 00 set 01 set 10 set 11 set 00 set 01 set 10 set 11 Predicted Actual

b1 4/1 11 10 10 10 10 10 10 10 10 N N
b2 4/1 01 10 10 10 10 10 10 10 10 N T
b1 8/0 10 10 10 10 10 10 11 10 10
b2 8/0
b1 12/1
b2 12/1
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2
b1
b2

Table 3.3-3

 14

Problem 3.4: Importance of Features

For the following snippets of code, select the single architectural feature that will most
improve the performance of the code. Explain your choice, including description of why
the other features will not improve performance as much and your assumptions about the
machine design. The features you have to choose from are: out-of-order issue with
renaming, branch prediction, and superscalar execution. Loads are marked whether they
hit or miss in the cache.

Problem 3.4.A

 ADD.D F0, F1, F8
ADD.D F2, F3, F8
ADD.D F4, F5, F8
ADD.D F6, F7, F8

Circle one:
• Out-of-Order Issue with Renaming
• Branch Prediction
• Superscalar

Problem 3.4.B

loop: ADD R3 R4 R0
 LD R4, 8(R4) # cache hit
 BNEQZ R4, LOOP

Circle one:
• Out-of-Order Issue with Renaming
• Branch Prediction
• Superscalar

 15

Problem Q3.3.C

LD R1 0(R2) # cache miss
ADD R2 R1 R1
LD R1 0(R3) # cache hit
LD R3 0(R4) # cache hit
ADD R3 R1 R3
ADD R1 R2 R3

Circle one:

• Out-of-Order Issue with Renaming
• Branch Prediction
• Superscalar

