
 

 CS152 
Computer Architecture and Engineering 

 

 VLIW, Vector, and 
Multithreaded Machines 

 

Assigned March 30 Problem Set #4 Due April 8 
 

http://inst.eecs.berkeley.edu/~cs152/sp10 
 

The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in their own solutions to the 
problems. 
The problem sets also provide essential background material for the quizzes. The problem sets 
will be graded primarily on an effort basis, but if you do not work through the problem sets you 
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 
the problem sets are due to give you feedback.  Homework assignments are due at the beginning 
of class on the due date. Homework will not be accepted once solutions are handed out. 



 Page 2 of 17  

Problem P4.1: Trace Scheduling 
 
Trace scheduling is a compiler technique that increases ILP by removing control dependencies, 
allowing operations following branches to be moved up and speculatively executed in parallel 
with operations before the branch. It was originally developed for statically scheduled VLIW 
machines, but it is a general technique that can be used in different types of machines and in this 
question we apply it to a single-issue MIPS processor. 
 
Consider the following piece of C code (% is modulus) with basic blocks labeled: 
 
A    if (data % 8 == 0) 
B      X = V0 / V1; 
     else 
C      X = V2 / V3; 
D    if (data % 4 == 0) 
E      Y = V0 * V1; 
     else 
F      Y = V2 * V3; 
G 
 
Assume that data is a uniformly distributed integer random variable that is set sometime before 
executing this code. 
 
The program’s control flow graph is        The decision tree is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A control flow graph and the decision tree both show the possible flow of execution through 
basic blocks.  However, the control flow graph captures the static structure of the program, while 
the decision tree captures the dynamic execution (history) of the program. 
 

A 

B C 

D 

E F 

G 

A 

B C 

D D 

E E F F 

G G G G Path 
probabilities 
for 5.A: 



 Page 3 of 17  

Problem P4.1.A  
 
On the decision tree, label each path with the probability of traversing that path.  For example, 
the leftmost block will be labeled with the total probability of executing the path ABDEG.  
(Hint: you might want to write out the cases).  Circle the path that is most likely to be executed. 
 
 
Problem P4.1.B  

 
This is the MIPS code (no delay slots): 
 
A: lw r1, data 
 andi r2, r1, 7  ;; r2 <- r1%8 
 bnez r2, C 
B: div r3, r4, r5 ;; X <- V0/V1 
 j D 
C: div r3, r6, r7 ;; X <- V2/V3 
D: andi r2, r1, 3  ;; r2 <- r1%4 
 bnez r2, F 
E: mul r8, r4, r5 ;; Y <- V0*V1 
 j G 
F: mul r8, r6, r7 ;; Y <- V2*V3 
G: 
This code is to be executed on a single-issue processor without branch speculation.  Assume that 
the memory, divider, and multiplier are all separate, long latency, unpipelined units that can be 
run in parallel.  Rewrite the above code using trace scheduling.  Optimize only for the most 
common path.  Just get the other paths to work.  Don’t spend your time performing any other 
optimizations.  Ignore the possibility of exceptions.  (Hint: Write the most common path first 
then add fix-up code.) 
 
 
 
Problem P4.1.C  

 
Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.  
Approximately how many cycles does the original code take? (ignore small constants) 
Approximately how many cycles does the new code take in the best case? 
 



 Page 4 of 17  

Problem P4.2: VLIW machines 
 
The program we will use for this problem is listed below (In all questions, you should assume 
that arrays A, B and C do not overlap in memory). 
: 
 

C code 
 

for (i=0; i<328; i++) { 
    A[i] = A[i] * B[i]; 
    C[i] = C[i] + A[i]; 
} 

 
In this problem, we will deal with the code sample on a VLIW machine. Our machine will have 
six execution units: 
- two ALU units, latency one cycle, also used for branch operations 
- two memory units, latency three cycles, fully pipelined, each unit can perform either a store 

or a load 
- two FPU units, latency four cycles, fully pipelined, one unit can perform fadd operations, 

the other fmul operations. 
Our machine has no interlocks. The result of an operation is written to the register file 
immediately after it has gone through the corresponding execution unit: one cycle after issue for 
ALU operations, three cycles for memory operations and four cycles for FPU operations. The old 
values can be read from the registers until they have been overwritten. 
 
Below is a diagram of our VLIW machine: 
 

 
 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store 
Units, 

Three Cycle Latency Two Floating-Point 
Units, 

Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP ADD FP MULT Int Op 1 



 Page 5 of 17  

The program for this problem translates to the following VLIW operations: 
 

loop: 1. ld f1, 0(r1) ; f1 = A[i] 
 2. ld f2, 0(r2) ; f2 = B[i] 
 3. fmul f4, f2, f1 ; f4 = f1 * f2 
 4. st f4, 0(r1) ; A[i] = f4 
 5. ld f3, 0(r3) ; f3 = C[i] 
 6. fadd f5, f4, f3 ; f5 = f4 + f3 
 7. st f5, 0(r3) ; C[i] = f5 
 8. add r1, r1, 4 ; i++ 
 9. add r2, r2, 4  
 10. add r3, r3, 4  
 11. add r4, r4, -1  
 12. bnez r4, loop ; loop 

 
 
Problem P4.2.A  

 
Table P4.2-1, on the next page, shows our program rewritten for our VLIW machine, with some 
operations missing (instructions 2, 6 and 7). We have rearranged the instructions to execute as 
soon as they possibly can, but ensuring program correctness. Please fill in missing operations. 
(Note, you may not need all the rows) 
 
 
 
Problem P4.2.B  

 
How many cycles are required to complete one iteration of the loop in steady state? What is the 
performance (flops/cycle) of the program? 
 
 
 
Problem P4.2.C  

 
How many VLIW instructions would the smallest software pipelined loop require? Explain 
briefly. Ignore the prologue and the epilogue. Note: You do not need to write the software 
pipelined version. (You may consult Table P4.2-1 for help) 
 
 
 
Problem P4.2.D  

 
What would be the performance (flops/cycle) of the program? How many iterations of the loop 
would we have executing at the same time? 
 



 Page 6 of 17  

 
ALU1 ALU2 MU1 MU2 FADD FMUL 

Add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1)    

Add r3, r3, 4 add r4, r4, -1 ld f3, 0(r3)    

      

     fmul f4, f2, f1 

      

      

      

   st f4, -4(r1)   

      

      

      

 bnez r4, loop     

      

      

      
 

Table P4.2-1: VLIW Program 
 



 Page 7 of 17  

 
Problem P4.2.E  

 
If we unrolled the loop once, would that give us better performance? How many VLIW 
instructions would we need for optimal performance? How many flops/cycle would we 
get? Explain. 
 
 
 
Problem P4.2.F  

 
What is the maximal performance in flops/cycle for this program on this architecture? 
Explain. 
 
 
 
 
Problem P4.2.G  

 
If our machine had a rotating register file, could we use fewer instructions than in 
Question P4.2.F and still achieve optimal performance? Explain. 
 
 
 
 
Problem P4.2.H  

 
Imagine that memory latency has just increased to 100 cycles. Circle how many 
instructions (approximately) an optimal loop would require. (no rotating register file, 
ignoring prologue/epilogue). Explain briefly. 
 

5                50                100              200 
 
 
 
Problem P4.2.I  

 
Now our processor still has memory latency of up to 100 cycles when it needs to retrieve 
data from main memory, but only 3 cycles if the data comes from the cache. Thus a 
memory operation can complete and write its result to a register anywhere between 3 and 
100 cycles after being issued. Since our processor has no interlocks, other instructions 
will continue being issued. Thus, given two instructions, it is possible for the instruction 
issued second to complete and write back its result first. Circle how many instructions 
(approximately) are required for an optimal loop. Explain briefly. 
 

5                  50                100              200 



 Page 8 of 17  

Problem P4.3: VLIW & Vector Coding 
 
Ben Bitdiddle has the following C loop, which takes the absolute value of elements 
within a vector. 
 
for (i = 0; i < N; i++) { 
    if (A[i] < 0) 
        A[i] = -A[i]; 
} 
 
Problem P4.3.A  

 
Ben is working with an in-order VLIW processor, which issues two MIPS-like operations 
per instruction cycle.  Assume a five-stage pipeline with two single-cycle ALUs, memory 
with one read and one write port, and a register file with four read ports and two write 
ports.  Also assume that there are no branch delay slots, and loads and stores only take 
one cycle to complete.  Turn Ben’s loop into VLIW code.  A and N are 32-bit signed 
integers. Initially, R1 contains N and R2 points to A[0]. You do not have to preserve the 
register values.  Optimize your code to improve performance but do not use loop 
unrolling or software pipelining.  What is the average number of cycles per element for 
this loop, assuming data elements are equally likely to be negative and non-negative? 
 
 
 
Problem P4.3.B  

 
Ben wants to remove the data-dependent branches in the assembly code by using 
predication. He proposes a new set of predicated instructions as follows: 
 
1) Augment the ISA with a set of 32 predicate bits P0-P31. 
2) Every standard non-control instruction now has a predicated counterpart, with the 

following syntax: 
 

(pbit1) OPERATION1 ; (pbit2) OPERATION2 
 
 (Execute the first operation of the VLIW instruction if pbit1 is set and execute the 
second operation of the VLIW instruction if pbit2 is set.) 

 
3) Include a set of compare operations that conditionally set a predicate bit: 
 
 CMPLTZ pbit,reg ; set pbit if reg < 0 
 CMPGEZ pbit,reg ; set pbit if reg >= 0 
 CMPEQZ pbit,reg ; set pbit if reg == 0 
 CMPNEZ pbit,reg ; set pbit if reg != 0 



 Page 9 of 17  

Eliminate all forward branches from Question P4.3.A with the new predicated operations.  
Try to optimize your code but do not use software pipelining or loop unrolling. 
 
What is the average number of cycles per element for this new loop? Assume that the 
predicate-setting compares have single cycle latency (i.e., behave similarly to a regular 
ALU instruction including full bypassing of the predicate bit). 
 
 
 
Problem P4.3.C  

 
Unroll the predicated VLIW code to perform two iterations of the original loop before 
each backwards branch.  You should use software pipelining to optimize the code for 
both performance and code density.  What is the average number of cycles per element 
for large N? 



 Page 10 of 17  

Problem P4.4: Vector Machines 
 
In this problem, we analyze the performance of vector machines.  We start with a 
baseline vector processor with the following features: 

• 32 elements per vector register 
• 8 lanes 
• One ALU per lane: 1 cycle latency 
• One load/store unit per lane: 4 cycle latency, fully pipelined 
• No dead time 
• No support for chaining 
• Scalar instructions execute on a separate 5-stage pipeline 

 
To simplify the analysis, we assume a magic memory system with no bank conflicts and 
no cache misses.   
 
We consider execution of the following loop: 
 

C code 
 

for (i=0; i<320; i++) { 
    C[i] = A[i] + B[i] – 1; 
} 

assembly code 
 
# initial conditions: 
#   R1 points to A[0]  
#   R2 points to B[0] 
#   R3 points to C[0] 
#   R4 = 1 
#   R5 = 320 
 
loop: 
  LV    V1, R1      # load A 
  LV    V2, R2      # load B 
  ADDV  V3, V1, V2  # add A+B 
  SUBVS V4, V3, R4  # subtract 1 
  SV    R3, V4      # store C 
  ADDI  R1, R1, 128 # incr. A pointer 
  ADDI  R2, R2, 128 # incr. B pointer 
  ADDI  R3, R3, 128 # incr. C pointer 
  SUBI  R5, R5, 32  # decr. count 
  BNEZ  R5, loop    # loop until done 

 



 Page 11 of 17  

 
Problem P4.4.A  

 
Complete the pipeline diagram of the baseline vector processor running the given code. 
 
The following supplementary information explains the diagram: 

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and 
writeback (W). 
A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 
functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 
instruction finishes writing back all of its elements.  A vector instruction is pipelined across all the 
lanes in parallel.  For each element, the operands are read (R) from the vector register file, the 
operation executes on the load/store unit (M) or the ALU (X), and the result is written back (W) to 
the vector register file. 
A stalled vector instruction does not block a scalar instruction from executing. 
LV1 and LV2 refer to the first and second LV instructions in the loop. 

 
cycle 

instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ⎯  ⎯  ⎯  R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          

ADDV   F D ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  ⎯  R X1 W                       
ADDV                 R X1 W                      
ADDV                  R X1 W                     
ADDV                   R X1 W                    
SUBVS    F D ⎯                                    
SUBVS                                         
SUBVS                                         
SUBVS                                         

SV     F D ⎯                                   
SV                                         
SV                                         
SV                                         

ADDI      F D X M W                               
ADDI       F D X M W                              
ADDI        F D X M W                             
SUBI         F D X M W                            
BNEZ          F D X M W                           
LV1           F D ⎯                             
LV1                                         
LV1                                         
LV1                                         

 
 



 Page 12 of 17  

 
Problem P4.4.B  

 
In this question, we analyze the performance benefits of chaining and additional lanes.  
Vector chaining is done through the register file and an element can be read (R) on the 
same cycle in which it is written back (W), or it can be read on any later cycle (the 
chaining is flexible).  For this question, we always assume 32 elements per vector 
register, so there are 2 elements per lane with 16 lanes, and 1 element per lane with 32 
lanes. 
 
To analyze performance, we calculate the total number of cycles per vector loop iteration 
by summing the number of cycles between the issuing of successive vector instructions.  
For example, in Question P4.4.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and 
ADDV in cycle 16.  Therefore, there are 4 cycles between LV1 and LV2, and 9 cycles 
between LV2 and ADDV. 
 
Complete the following table.  The first row corresponds to the baseline 8-lane vector 
processor with no chaining.  The second row adds flexible chaining to the baseline 
processor, and the last two rows increase the number of lanes to 16 and 32. 
(Hint: You should consider each pair of vector instructions independently, and you can 
ignore the scalar instructions.) 
 

number of cycles between  
successive vector instructions 

Vector processor 
configuration 

LV1,  
LV2 

LV2, 
ADD
V 

ADDV, 
SUBVS 

SUBVS,  
SV 

SV,  
LV1 

total cycles 
per vector 
loop iter. 

8 lanes, no chaining 4 9     
 

8 lanes, chaining  
 

     

16 lanes, chaining  
 

     

32 lanes, chaining  
 

     

 



 Page 13 of 17  

 
Even with the baseline 8-lane vector processor with no chaining (used in Question 
P4.4.A), we can improve performance using software loop-unrolling and instruction 
scheduling.  As a first step, we unroll two iterations of the loop and rename the vector 
registers in the second iteration: 

 
loop: 
I1:    LV    V1, R1      # load A 
I2:    LV    V2, R2      # load B 
I3:    ADDV  V3, V1, V2  # add A+B 
I4:    SUBVS V4, V3, R4  # subtract 1 
I5:    SV    R3, V4      # store C 
I6:    ADDI  R1, R1, 128 # incr. A pointer 
I7:    ADDI  R2, R2, 128 # incr. B pointer 
I8:    ADDI  R3, R3, 128 # incr. C pointer 
I9:    SUBI  R5, R5, 32  # decr. count 
I10:   LV    V5, R1      # load A 
I11:   LV    V6, R2      # load B 
I12:   ADDV  V7, V5, V6  # add A+B 
I13:   SUBVS V8, V7, R4  # subtract 1 
I14:   SV    R3, V8      # store C 
I15:   ADDI  R1, R1, 128 # incr. A pointer 
I16:   ADDI  R2, R2, 128 # incr. B pointer 
I17:   ADDI  R3, R3, 128 # incr. C pointer 
I18:   SUBI  R5, R5, 32  # decr. count 
I19:   BNEZ  R5, loop    # loop until done 

 
Reorder the instructions in the unrolled loop to improve performance on the baseline 
vector processor (your solution does not need to be optimal). 
Provide a valid ordering by listing the instruction numbers below (a few have already 
been filled in for you).  Filling in the “Instruction” field is optional. You may assume that 
the A, B and C arrays do not overlap. 
 

Instr. Number Instruction 
I1 LV    V1, R1 
I2 LV    V2, R2 
  
  
  
  
  
  
  
  
  
  
  
I15 ADDI  R1, R1, 128 
I16 ADDI  R2, R2, 128 
I17 ADDI  R3, R3, 128 
I9 SUBI  R5, R5, 32 
I18 SUBI  R5, R5, 32 
I19 BNEZ  R5, loop 

Problem P4.4.C  



 Page 14 of 17  

Problem P4.5: Multithreading  
 
This problem evaluates the effectiveness of multithreading using a simple database 
benchmark. The benchmark searches for an entry in a linked list built from the following 
structure, which contains a key, a pointer to the next node in the linked list, and a pointer 
to the data entry.  
 

struct node { 
int key; 
struct node *next; 
struct data *ptr; 

} 
  
The following MIPS code shows the core of the benchmark, which traverses the linked 
list and finds an entry with a particular key. Assume MIPS has no delay slots. 
 

 ; 
 ; R1: a pointer to the linked list 
 ; R2: the key to find 
 ; 

loop: LW  R3, 0(R1)  ; load a key 
  LW  R4, 4(R1)  ; load the next pointer 
  SEQ  R3, R3, R2 ; set R3 if R3 == R2 
  BNEZ R3, End  ; found the entry 
  ADD  R1, R0, R4 
  BNEZ R1, Loop  ; check the next node 
End: 

; R1 contains a pointer to the matching entry or zero 
if    ; not found 

 
We run this benchmark on a single-issue in-order processor. The processor can fetch and 
issue (dispatch) one instruction per cycle. If an instruction cannot be issued due to a data 
dependency, the processor stalls. Integer instructions take one cycle to execute and the 
result can be used in the next cycle. For example, if SEQ is executed in cycle 1, BNEZ 
can be executed in cycle 2. We also assume that the processor has a perfect branch 
predictor with no penalty for both taken and not-taken branches. 
 
Problem P4.5.A  

 
Assume that our system does not have a cache. Each memory operation directly accesses 
main memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-
blocking. After the processor issues a memory operation, it can continue executing 
instructions until it reaches an instruction that is dependent on an outstanding memory 
operation. How many cycles does it take to execute one iteration of the loop in steady 
state?  
 



 Page 15 of 17  

 
 
Problem P4.5.B  

 
Now we add zero-overhead multithreading to our pipeline. A processor executes multiple 
threads, each of which performs an independent search. Hardware mechanisms schedule 
a thread to execute each cycle.    
 
In our first implementation, the processor switches to a different thread every cycle using 
fixed round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads 
executes one instruction every N cycles. What is the minimum number of threads that 
we need to fully utilize the processor, i.e., execute one instruction per cycle?  
 
 
 
Problem P4.5.C  

 
How does multithreading affect throughput (number of keys the processor can find within 
a given time) and latency (time processor takes to find an entry with a specific key)? 
Assume the processor switches to a different thread every cycle and is fully utilized. 
Check the correct boxes. 
 

 Throughput Latency 

Better   

Same   

Worse   
 
 
 
Problem P4.5.D  

 
We change the processor to only switch to a different thread when an instruction cannot 
execute due to data dependency. What is the minimum number of threads to fully utilize 
the processor now? Note that the processor issues instructions in-order in each thread. 



 Page 16 of 17  

Problem P4.6: Multithreading 
 
Consider a single-issue in-order multithreading processor that is similar to the one 
described in Problem P4.5.   
 
Each cycle, the processor can fetch and issue one instruction that performs any of the 
following operations: 
 

• load/store, 12-cycle latency (fully pipelined) 
• integer add, 1-cycle latency  
• floating-point add, 5-cycle latency (fully pipelined) 
• branch, no delay slots, 1-cycle latency 

 
The processor does not have a cache.  Each memory operation directly accesses main 
memory.  If an instruction cannot be issued due to a data dependency, the processor 
stalls.  We also assume that the processor has a perfect branch predictor with no penalty 
for both taken and not-taken branches. 
 
You job is to analyze the processor utilizations for the following two thread-switching 
implementations: 
 
Fixed Switching:  the processor switches to a different thread every cycle using fixed 
round robin scheduling.  Each of the N threads executes an instruction every N cycles. 
 
Data-dependent Switching:  the processor only switches to a different thread when an 
instruction cannot execute due to a data dependency. 
 
Each thread executes the following MIPS code: 
 
loop: L.D   F2, 0(R1)  ;  load data into F2 
  ADDI  R1, R1, 4  ;  bump source pointer 
  FADD  F3, F3, F2 ;  F3 = F3 + F2 
  BNE  F2, F4, loop ;  continue if F2 != F4 
 
Problem P4.6.A  

 
What is the minimum number of threads that we need to fully utilize the processor for 
each implementation?   
 
Fixed Switching: _________________ Thread(s) 
 
 
Data-dependent Switching: _________________ Thread(s) 
 
 
 



 Page 17 of 17  

Problem P4.6.B  
 
What is the minimum number of threads that we need to fully utilize the processor for 
each implementation if we change the load/store latency to 1-cycle (but keep the 5-
cycle floating-point add)?   
 
 
Fixed Switching: _________________ Thread(s) 
 
 
 
Data-dependent Switching: _________________ Thread(s) 
 
 
 
 
Problem P4.6.C  

 
Consider a Simultaneous Multithreading (SMT) machine with limited hardware 
resources.  Circle the following hardware constraints that can limit the total number of 
threads that the machine can support.  For the item(s) that you circle, briefly describe the 
minimum requirement to support N threads. 
 
 
(A) Number of Functional Unit:  
 
 
(B) Number of Physical Registers: 
 
 
(C) Data Cache Size: 
 
 
(D) Data Cache Associatively: 
 
 


