

Computer Architecture and Engineering

CS152 Quiz #1
February 16th, 2010

Professor Krste Asanovic

Name:__ ANSWER KEY ____

This is a closed book, closed notes exam.
80 Minutes

 9 Pages
Notes:
• Not all questions are of equal difficulty, so look over the entire exam

and budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with students who have not

yet taken the quiz. If you have inadvertently been exposed to the
quiz prior to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet ________ 1 Point
 Question 1 ________ 29 Points
 Question 2 ________ 32 Points
 Question 3 ________ 18 Points

TOTAL ________ 80 Points

NAME: ___________________________

Problem Q.1: Microprogramming Bus-Based Architectures

[29 points]

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS
Implementation), which we have included at the end of this quiz for your reference.

You are going to implement a memory-indirect jump-and-link instruction in microcode.
JALM writes the link register with the value PC+4, then fetches a word from memory,
then jumps to the address held in the memory location. (This instruction could be used to
accelerate virtual function calls in languages like C++ or Java.) The instruction has the
following format:

JALM offset (rs)
JALM performs the following operation:

temp ← R[rs] + sExt16(immediate)

 R[31] ← PC+4

PC ← M[temp]

Q.1.A – Implement JALM [18 points]
Fill in Worksheet Q1-1 with the microcode for JALM. Use don’t cares (*) for fields
where it is safe to use don’t cares. Study the hardware description well, and make sure
all your microinstructions are legal. To further simplify this problem, ignore the busy
signal, and assume that the memory is as fast as the register file. Furthermore, assume no
branch delay slots.

For this part of the problem, your implementation may make the simplifying assumption
that rs is not equal to 31, i.e. that the order of the first two operations may be reversed.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as
you do it neatly. Your code should exhibit “clean” behavior and not modify any ISA-
visible registers (except the PC and the link register) in the course of executing the
instruction. You will receive credit for elegance and efficiency.

Finally, make sure that your microcode sequence fetches the next instruction in program
order (i.e., by doing a microbranch to FETCH0 as discussed in the Handout).

Q.1.B – Implement JALM’s Corner Case [11 points]
Now, fill in Worksheet Q1-2 with microcode for JALM that will work correctly even if
rs is equal to 31. Compared to the simplified implementation from Q.1.A, how many
additional cycles does your correct implementation take to execute?

NAME: ___________________________

State PseudoCode ld

IR
Reg
Sel

Reg
Wr

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

JALM0: R[31] <- A+4 0 31 1 1 * * INC_A_4 1 * * 0 * 0 N *

 A <- R[rs] 0 rs 0 1 1 * * 0 * * 0 * 0 N *

 B <- sExt16(imm) * * * 0 0 1 * 0 * * 0 s16 1 N *

 MA <- A+B * * * 0 * * ADD 1 1 * 0 * 0 N *

 PC <- Mem[MA] * PC 1 1 * * * 0 * 0 1 * 0 J FETCH0

Worksheet Q1-1
There are many valid ways to solve this problem. The problem description both said to use don’t cares (*) and to use “elegance and
efficiency.” With that in mind, one point was deducted per extra cycle your implementation took, and up to two points were deducted
for not using don’t-cares everywhere possible. Correctness issues cost two or more points apiece.

Some common errors:

Setting the link register to PC+8 (i.e. failing to notice that PC has already been incremented by 4)
Not taking advantage of the fact that A already contained PC
Not using don’t-cares on ldIR, or employing don’t-cares a cycle late

NAME: ___________________________

State PseudoCode ld

IR
Reg
Sel

Reg
Wr

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

JALM0: B <- R[rs] 0 rs 0 1 0 1 * 0 * * 0 * 0 N *

 R[31] <- A+4 0 31 1 1 * 0 INC_A_4 1 * * 0 * 0 N *

 A <- sExt16(imm) * * * 0 1 0 * 0 * * 0 s16 1 N *

 MA <- A+B * * * 0 * * ADD 1 1 * 0 * 0 N *

 PC <- Mem[MA] * PC 1 1 * * * 0 * 0 1 * 0 J FETCH0

Worksheet Q1-2

NAME: ___________________________

Problem Q2: 6-Stage Pipeline

[32 points]

In this problem, we consider a modification to the fully bypassed 5-stage MIPS processor
pipeline presented in Lecture 3 and Problem Set 1. Our new processor has a data cache
with a two-cycle latency. To accommodate this cache, the memory stage is pipelined into
two stages, M1 and M2, as shown in Figure 2-A. Additional bypasses are added to keep
the pipeline fully bypassed.

Suppose we are implementing this 6-stage pipeline in a technology in which register file
ports are inexpensive but bypasses are costly. We wish to reduce cost by removing some
of the bypass paths, but without increasing CPI. The proposal is for all integer arithmetic
instructions to write their results to the register file at the end of the Execute stage, rather
than waiting until the Writeback stage. A second register file write port is added for this
purpose. Remember that register file writes occur on each rising clock edge, and values
can be read in the next clock cycle. The proposed change is shown in Figure 2-B.

In this problem, assume that the only exceptions that can occur in this pipeline are illegal
opcodes (detected in the Decode stage) and invalid memory address (detected at the start
of the M2 stage). Additionally assume that the control logic is optimized to stall only
when necessary. You may ignore branch and jump instructions in this problem.

Figure 2-A. 6-stage pipeline. For clarity, bypass paths are not shown.

Figure 2-B. 6-stage pipeline with proposed additional write port.

NAME: ___________________________

Problem Q.2.A-B Hazards
 [11 points]

Q.2.A – Second Write Port [6 points]
The second write port allows some bypass paths to be removed without adding stalls in
the decode stage. Explain how the second write port improves performance by
eliminating such stalls and give a short code sequence that would have required an
interlock to execute correctly with only a single write port and with the same bypass
paths removed.

The second write port improves performance by resolving some RAW hazards earlier
than they would be if ALU operations had to wait until writeback to provide their results
to subsequent dependent instructions. It would help with the following instruction
sequence:

add r1, r2, r3
add r4, r5, r6
add r7, r1, r9

The important insight is that the second write port cannot resolve data hazards for
immediately back-to-back instructions. (Recall that the RF is read in the ID stage, and
when after the first instruction has written back, it is in M1, so the third instruction is in
ID.)

Q.2.B – Bypasses Removed [5 points]
After the second write port is added, which bypass paths can be removed in this new
pipeline without introducing additional stalls? List each removed bypass individually.

The bypass path from the end of M1 to the end of ID can be removed. (Credit was also
given for the bypass path from the beginning of M2 to the beginning of EX, since these
are equivalent.)

Additionally, ALU results no longer have to be bypassed from the end of M2 or the end
of WB, but these bypass paths are still used to forward load results to earlier stages.

NAME: ___________________________

Problem Q.2.C-D Precise Exceptions
 [14 points]

Q.2.C – Precise Exceptions [7 points]
Without further modifications, this pipeline may not support precise exceptions. Briefly
explain why, and provide a minimal code sequence that will result in an imprecise
exception.

Illegal address exceptions are not detected until the start of the M2 stage. Since
writebacks can occur at the end of the EX stage, it is possible for an ALU op following a
memory access to an illegal address to have written its value back before the exception is
detected, resulting in an imprecise exception. For example:

lw r1, -1(r0) // address -1 is misaligned
add r2, r3, r4 // r2 will be overwritten, even though preceding instruction has faulted

Q.2.D – Implementing Precise Exceptions with an Interlock [7 points]
Describe how precise exceptions can be implemented by adding a new interlock. Provide
a minimal code sequence that would engage this interlock. Qualitatively, what is the
performance impact of this solution?

Stall any ALU op in the ID stage if the instruction in the EX stage is a load or a store.
The instruction sequence above engages this interlock.

Loads and stores account for about one-third of dynamic instructions. Assuming that the
instruction following a load or store is an ALU op two-thirds of the time, and ignoring
the existing load-use delay, this solution will increase the CPI by (1/3)*(2/3)==2/9.
However, only a qualitative explanation was necessary for credit.

NAME: ___________________________

Problem Q.2.E Precise Exceptions
 [7 points]

Q.2.E – Implementing Precise Exceptions with an Extra Read Port [7 points]
Suppose you are additionally given the budget to add a new register file read port.
Propose an alternative solution to implement precise exceptions in this pipeline without
requiring any new interlocks.

In addition to reading an instruction’s source operands in the ID stage, also read the
destination register, rd. If an early writeback occurs before a preceding exception was
detected, then the old value of rd is preserved in the EX/M1 pipeline register and can be
restored to the register file, maintaining precise state.

 9

Problem Q.3: Iron Law of Processor Performance (Short Answer) [18 points]

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. Explain your reasoning to receive credit.

 Instructions / Program Cycles / Instruction Seconds / Cycle

Reducing the
number of registers
in the ISA

Increase: values will more frequently
be spilled to the stack, increasing the
number of loads and stores.

Increase: more loads followed by
dependent instructions, will cause
stalls, which are likely to be difficult
to schedule around.

(-0.5 for no effect, the pipeline is
unchanged)

Decrease: fewer registers means shorter
register file access time.

(-1 for no effect, because the pipeline is
unchanged)

Adding a branch
delay slot

Increase: NOPs must be inserted when
the branch delay slot cannot be
usefully filled.

Decrease: some control hazards are
eliminated; also, additional NOPs
execute quickly because they have
no data hazards.

No effect: doesn’t change pipeline.

 -or-

Decrease: the branch_kill signal is no
longer needed.

Merging the
Execute and
Memory stages
(loads and stores
use a separate adder
to calculate
base+offset)

No effect: this change is only
microarchitectural, so is not ISA-
exposed.

Decrease: the load-use hazard is
eliminated, so fewer stalls will
occur.

Increase: a combinational path through
this stage includes both an adder and the
data memory and is thus longer.

 10

Changing
implementation
from a microcoded
CISC machine to a
RISC pipeline

Increase: it takes more RISC
instructions than CISC instructions to
encode the same program.

Decrease: microcoded machines
take several clock cycles to execute
an instruction, while the RISC
pipeline should have a CPI near 1.

No effect: the amount of work done in
one pipeline stage and one microcode
cycle are about the same.

 -or-

Increase: the RISC pipeline introduces
longer control paths and adds bypasses,
which are likely to be on the critical
path.

END OF QUIZ

