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NAME:_________________________ 
 

Problem Q5.1: Sequential Consistency     18 points 
 
In this problem, we consider the implementation of sequential consistency (SC) in a 
cache-coherent multiprocessor that uses a snoopy bus.  A processor can intervene in a bus 
transaction by asserting the retry signal, causing the processor that initiated the request to 
attempt it again later.  The bus supports only one outstanding cache miss at a time for the 
entire system.   
 
Each processor is equipped with a non-blocking data cache that supports hit-under-miss: 
while the cache is processing a miss, accesses that hit in the cache can still proceed.  The 
cache does not support miss-under-miss, so it will block in the event of a second miss.  A 
processor sends loads and stores to its cache in program order. 
 
Problem Q5.1.A 10 points 

 
Without further modifications, the hit-under-miss scheme can lead to violations of 
sequential consistency.  Carefully explain why.  Additionally, provide a short pseudocode 
sequence for two processors that could result in a sequentially inconsistent execution.  
Indicate whether each data memory access in your example is a cache hit or miss. 
 
Hit-under-miss enables younger memory accesses that hit in the cache to be made visible 
before an older memory access that misses in the cache.  Another processor could see 
these accesses out of program order, which violates SC. 
 
Assume that variables X and Y start out as 0.  Because the write to Y may proceed before 
the write to X, the following sequence of accesses could result in r1 = 1, r2 = 0, which is 
clearly a violation of SC. 
 
 
 
 
Processor 0   Hit/Miss Processor 1   Hit/Miss 
 
___X=1_____________ ___M____ ___r1=Y____________ ___M____ 
 
___Y=1_____________ ___H____ ___r2=X____________ ___H____ 



NAME:_________________________ 
 

 
Problem Q5.1.B 8 points 

 
Fortunately, it is possible to make the hit-under-miss scheme appear to be sequentially 
consistent by leveraging the snoopy bus.  Describe how to implement SC while 
maintaining hit-under-miss. 
 
Reordering only violates SC if other processors can observe it.  The only way for e.g. P1 
to observe P0’s accesses is via a bus transaction.  So, if P1 initiates a bus transaction 
while P0 is servicing a miss that has been hit-under, P0 can tell P1 to retry until the miss 
has been resolved.  This way, the miss and all subsequent hits are made visible at the 
same time. 
 
 
 
 
 
 
 
 
 
 
 



NAME:_________________________ 
 

Problem Q5.2: Relaxed Memory Models  15 points 
 
The following code implements a seqlock, which is a reader-writer lock that supports a 
single writer and multiple readers.  The writer never has to wait to update the data 
protected by the lock, but readers may have to wait if the writer is busy.  We use a 
seqlock to protect a variable that holds the current time.  The lock is necessary because 
the variable is 64 bits and thus cannot be read or written atomically on a 32-bit system. 
 
The seqlock is implemented using a sequence number, seqno, which is initially zero.  The 
writer begins by incrementing seqno.  It then writes the new time value, which is split 
into the 32-bit values time_lo and time_hi.  Finally, it increments seqno again.  Thus, if 
and only if seqno is odd, the writer is currently updating the counter. 
 
The reader begins by waiting until seqno is even.  It then reads time_lo and time_hi.  
Finally, it reads seqno again.  If seqno didn't change from the first read, then the read was 
successful; otherwise, the read is retried. 
 
This code is correct on a sequentially consistent system, but on a system with a fully 
relaxed memory model it may not be. Insert the minimum number of memory fences to 
make the code correct on a system with a relaxed memory model. To insert a fence, write 
the needed fence (MembarLL, MembarLS, MembarSL, MembarSS) in between the lines of 
code below. 
 
Writer	
   Reader	
  
	
  
 LOAD  Rseqno, (seqno) 
 
 
 ADD   Rseqno, Rseqno, 1 
  
 
 STORE (seqno), Rseqno 
 MembarSS 
  
 STORE (time_lo), Rtime_lo 
 
 
 STORE (time_hi), Rtime_hi 
 MembarSS 
 
 ADD   Rseqno, Rseqno, 1 
	
  
	
  
 STORE (seqno), Rseqno	
  

	
  
Loop: LOAD  Rseqno_before, (seqno) 
 
 
 IF(Rseqno_before & 1) 
  goto Loop 
 MembarLL 
  
 LOAD  Rtime_lo, (time_lo) 
 
 
 LOAD Rtime_hi, (time_hi) 
 MembarLL 
 
 LOAD Rseqno_after, (seqno) 
 
 
 IF(Rseqno_before != Rseqno_after) 
  goto Loop	
  

 



NAME:_________________________ 
 

Problem Q5.3: Directory Protocols      20 points 
 
Alice P. Hacker is designing a large-scale cache-coherent multiprocessor.  Recalling that 
directories are more scalable than snoopy buses, Alice decides to implement a full-map 
directory to maintain coherence.  
 
 
Problem Q5.3.A 6 points 

 
Alice’s first directory design maintains a bit vector for each cache-line-sized block of 
main memory.  For a given memory block, each bit in the bit vector represents whether or 
not one processor in the machine has that line cached.  For a 256-processor system with 
64B cache lines and 8GB of main memory, how large would Alice’s directory be? 
 
Directory size = (# of cache lines)*(# of processors) bits 
                        = (8GB/64B)*(256) bits 
                        = 32 Gbits 
                        = 4GB 
 
 
 
 
 
 
 
        ________4GB_______  
 
 
Problem Q5.3.B 6 points 

 
Alice realizes that her initial design might be impractical to implement.  She instead 
considers a directory organization that supports up to four sharers of a line at a time.  If a 
fifth processor requests a copy of the line, one of the original four sharers is invalidated.  
For each memory line, this approach requires four processor IDs and four valid bits.  
Now, how large is Alice’s directory? 
 
Directory size = (# of cache lines)*(4(1 + log2(# of processors))) bits 
                        = (8GB/64B)*(36) bits 
                        = 9*0.5 Gbits 
                        = 576MB 
 
 
 
 
        ________576MB_______ 



NAME:_________________________ 
 

Problem Q5.3.C 8 points 
 
Alice is concerned about the performance of the directory that supports only four sharers 
at a time.  As a final design alternative, she considers also adding a globally shared bit to 
each line.  Now, more than four processors can share the line, but if a fifth processor 
requests a copy of a cache line, the globally shared bit is set.  If some processor attempts 
to write a globally shared line, the directory no longer knows precisely which processors 
have a copy, so it sends invalidations to all processors in the system. 
 
Consider a program in which all processors in the system are contending for a lock, using 
a test-and-test-and-set algorithm.  The critical section is sufficiently long that all 
processors not in the critical section are spinning on the lock.  Which four-sharers 
directory organization will perform best: the directory with or without the globally shared 
bit?  Justify your answer. 
 
For your reference, the test-and-test-and-set lock acquisition algorithm works as follows: 
 
lock(addr): 
 while(test-and-set(addr) != 0) 
  while(*addr != 0) 
   ; 
Consider the globally shared bit scheme first.  Assume P0 gets the lock first.  Then, P1-
P255 will each have one directory transaction to get the line shared, at which point the 
directory tells P0 to write back.  Then, when P0 releases the lock, it upgrades to exclusive 
and P1-P255 are invalidated.  About 256 invalidations/downgrades occur per lock 
acquisition. 
 
Now, consider the four-sharers scheme.  After P0 gets the lock, P1-P255 will try to read 
it.  However, only four of P1-P255 can have the line shared at once, so they will keep 
invalidating each other, even though no writing is occurring!  Thus, the number of 
invalidations/downgrades per lock acquisition is proportional to the length of the critical 
section and could be very large. 
 
The global scheme will use substantially less network bandwidth and will thus perform 
better. 
 
 
 



NAME:_________________________ 
 

Problem Q5.4: Where has all the speedup gone?   26 points 
 
In each of the following problems, we consider a parallel program running on a cache-
coherent, shared-memory multiprocessor.  Each program is correct as written but suffers 
poor performance.  
 
Problem Q5.4.A 8 points 

 
The following code performs vector-vector addition. The integer P equals the number of 
processors running the program, and the integer id contains a given processor’s ID 
number, which lies in the range [0, P-1].  N is the vector size; you may assume that N is 
large and that P divides N. 
 

int P, id; 
int Z[N], X[N], Y[N]; 
 
for(int i = id; i < N; i += P) 
    Z[i] = X[i] + Y[i]; 

 
Unfortunately, false sharing eliminates any hope of parallel speedup.  Rewrite the code to 
avoid false sharing to the extent possible. 
 
False sharing will be essentially eliminated if the processors operate on contiguous 
chunks (i.e. unit-stride). 
 

for(int i = (N/P)*id; i < (N/P)*(id+1); i++) 
    Z[i] = X[i] + Y[i]; 



NAME:_________________________ 
 

 
Problem Q5.4.B 8 points 

 
The following code repeatedly gets data from the bar function and pushes it onto a shared 
stack.  When this code is running on only a subset of the processors in a system, all other 
programs see a noticeable slowdown due to the large number of bus transactions. Rewrite 
the code to reduce the frequency of bus transactions. 
 

shared int stack_lock = initially 0; 
shared stack s; 
 
while(1) 
{ 
    int foo = bar(); 
 
    while(test_and_set(&stack_lock) != 0) 
        ; 
 
    s.push(foo); 
 
    stack_lock = 0; 
} 

 
Replace the test-and-set lock with a test-and-test-and-set lock.  (The code from Q5.3.C 
could be used.) 



NAME:_________________________ 
 

 
Problem Q5.4.C 5 points 

 
Ben Bitdiddle is computing fast Fourier transforms in parallel, but his parallel speedup is 
lower than he would like.  Careful analysis of the code indicates that true sharing is 
causing a substantial number of coherence misses. 
 
Which of the following changes to the system will reduce the total number of coherence 
misses that occur when computing a transform?  Circle all that apply, and provide a brief 
explanation for each item that you circle. 
 
 a) Increase cache capacity 
 
 
 
 b) Reduce the number of processors 
 This will reduce the number of coherence misses because less sharing will occur. 
 In the limit of 1 processor, no coherence misses can occur. 
 
 c) Increase cache associativity 
 
 
 
 d) Add hardware prefetching 
 This can hide the effect of coherence misses if data is shared in a pattern that 
 is amenable to prefetching. 
  
Problem Q5.4.D 5 points 

 
Consider Ben Bitdiddle’s parallel transform once again.  Which of the following changes 
to the system will both reduce the number of coherence misses that occur and improve 
performance? Circle all that apply, and provide a brief explanation for each. 
  
 a) Increase cache capacity 
 
 b) Reduce the number of processors 
 If the system is bus-bandwidth-limited, reducing sharing would reduce total 
 bus traffic, so reducing the number of processors may actually improve 

performance. 
 
 
 c) Increase cache associativity 
 
 d) Add hardware prefetching 
 If the prefetching is timely and the system isn’t bus-bandwidth-limited, timely 
 prefetching will improve performance. 
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NAME:_________________________ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

END OF QUIZ 
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 CS152 Computer Architecture and Design  
 Directory-based Cache Coherence Protocol 4/13/2010 
 
Before introducing a directory-based cache coherence protocol, we make the following 
assumptions about the interconnection network: 

• Message passing is reliable, and free from deadlock, livelock and starvation. In 
other words, the transfer latency of any protocol message is finite. 

• Message passing is FIFO. That is, protocol messages with the same source and 
destination sites are always received in the same order as that in which they were 
issued. 

 
Cache states: For each cache line, there are 4 possible states: 

• C-invalid (= Nothing): The accessed data is not resident in the cache. 
• C-shared (= Sh): The accessed data is resident in the cache, and possibly also 

cached at other sites. The data in memory is valid. 
• C-modified (= Ex): The accessed data is exclusively resident in this cache, and 

has been modified. Memory does not have the most up-to-date data. 
• C-transient (= Pending): The accessed data is in a transient state (for example, 

the site has just issued a protocol request, but has not received the corresponding 
protocol reply). 

 
Home directory states: For each memory block, there are 4 possible states: 

• R(dir): The memory block is shared by the sites specified in dir (dir is a set of 
sites). The data in memory is valid in this state.  If dir is empty (i.e., dir = ε), the 
memory block is not cached by any site. 

• W(id): The memory block is exclusively cached at site id, and has been modified 
at that site. Memory does not have the most up-to-date data. 

• TR(dir): The memory block is in a transient state waiting for the 
acknowledgements to the invalidation requests that the home site has issued. 

• TW(id): The memory block is in a transient state waiting for a block exclusively 
cached at site id (i.e., in C-modified state) to make the memory block at the home 
site up-to-date. 

 
Protocol messages: There are 10 different protocol messages, which are summarized in 
the following table (their meaning will become clear later).  
 

Category Messages 
Cache to Memory Requests ShReq, ExReq 
Memory to Cache Requests WbReq, InvReq, FlushReq 
Cache to Memory Responses WbRep(v), InvRep, FlushRep(v) 
Memory to Cache Responses ShRep(v), ExRep(v) 

 



NAME:_________________________ 
 

 
No
. 

Current State Handling Message Next State Dequeue  
Message? 

Action 

1 C-nothing Load C-pending No ShReq(id,Home,a) 

2 C-nothing Store C-pending No ExReq(id,Home,a) 

3 C-nothing WbReq(a) C-nothing Yes None 

4 C-nothing FlushReq(a) C-nothing Yes None 

5 C-nothing InvReq(a) C-nothing Yes None 

6 C-nothing ShRep (a) C-shared Yes updates cache with prefetch data 

7 C-nothing ExRep (a) C-exclusive Yes updates cache with data 

8 C-shared Load C-shared Yes Reads cache 

9 C-shared WbReq(a) C-shared Yes None 

10 C-shared FlushReq(a) C-nothing Yes InvRep(id, Home, a) 

11 C-shared InvReq(a) C-nothing Yes InvRep(id, Home, a) 

12 C-shared ExRep(a) C-exclusive Yes None 

13 C-shared (Voluntary Invalidate) C-nothing N/A InvRep(id, Home, a) 

14 C-exclusive Load C-exclusive Yes reads cache 

15 C-exclusive Store C-exclusive Yes writes cache 

16 C-exclusive WbReq(a) C-shared Yes WbRep(id, Home, data(a)) 

17 C-exclusive FlushReq(a) C-nothing Yes FlushRep(id, Home, data(a)) 

18 C-exclusive (Voluntary Writeback) C-shared N/A WbRep(id, Home, data(a)) 

19 C-exclusive (Voluntary Flush) C-nothing N/A FlushRep(id, Home, data(a)) 

20 C-pending WbReq(a) C-pending Yes None 

21 C-pending FlushReq(a) C-pending Yes None 

22 C-pending InvReq(a) C-pending Yes None 

23 C-pending ShRep(a) C-shared Yes updates cache with data 

24 C-pending ExRep(a) C-exclusive Yes update cache with data 

 
Table H12-1: Cache State Transitions 
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No. Current State Message Received Next State Dequeue  

Message? 
Action 

1 R(dir) & (dir = ε) ShReq(a) R({id}) Yes ShRep(Home, id, data(a)) 

2 R(dir) & (dir = ε) ExReq(a) W(id) Yes ExRep(Home, id, data(a)) 

3 R(dir) & (dir = ε) (Voluntary Prefetch) R({id}) N/A ShRep(Home, id, data(a)) 

4 R(dir) & (id ∉ dir) 
& (dir ≠ ε) 

ShReq(a) R(dir + {id}) Yes ShRep(Home, id, data(a)) 

5 R(dir) & (id ∉ dir) 
& (dir ≠ ε) 

ExReq(a) Tr(dir) No InvReq(Home, dir, a) 

6 R(dir) & (id  ∉ dir) 
& (dir ≠ ε) 

(Voluntary Prefetch) R(dir + {id}) N/A ShRep(Home, id, data(a)) 

7 R(dir) & (dir = {id}) ShReq(a) R(dir) Yes None 

8 R(dir) & (dir = {id}) ExReq(a) W(id) Yes ExRep(Home, id, data(a)) 

9 R(dir) & (dir = {id}) InvRep(a) R(ε) Yes None 

10 R(dir) & (id ∈ dir) 
& (dir ≠ {id}) 

ShReq(a) R(dir) Yes None 

11 R(dir) & (id ∈ dir) 
& (dir ≠ {id}) 

ExReq(a) Tr(dir-{id}) No InvReq(Home, dir - {id}, a) 

12 R(dir) & (id ∈ dir) 
& (dir ≠ {id}) 

InvRep(a) R(dir - {id}) Yes None 

13 W(id’) ShReq(a) Tw(id’) No WbReq(Home, id’, a) 

14 W(id’) ExReq(a) Tw(id’) No FlushReq(Home, id’, a) 

15 W(id) ExReq(a) W(id) Yes None 

16 W(id) WbRep(a) R({id}) Yes data -> memory 

17 W(id) FlushRep(a) R(ε) Yes data -> memory 

18 Tr(dir) & (id ∈ dir) InvRep(a) Tr(dir - {id}) Yes None 

19 Tr(dir) & (id ∉ dir) InvRep(a) Tr(dir) Yes None 

20 Tw(id) WbRep(a) R({id}) Yes data-> memory 

21 Tw(id) FlushRep(a) R(ε) Yes data-> memory 

 
Table H12-2: Home Directory State Transitions, Messages sent from site id 
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 CS152 Computer Architecture and Design  
 Snoopy Cache Coherence Protocol 4/13/2010 
 

 
We introduce an invalidation coherence protocol for write-back caches similar to those 
employed by the SUN MBus. As in most invalidation protocols, only a single cache may 
own a modified copy of a cache line at any one time. However, in addition to allowing 
multiple shared copies of clean data, multiple shared copies of modified data may also 
exist. (Here, modified data refers to data different from memory. When multiple shared 
copies of modified data exist, one of the caches owns the current copy of the data instead 
of the memory.) All shared copies are invalidated any time a new modified (write) copy 
is created. 
 
The MBus transactions with which we are concerned are: 
• Coherent Read (CR): issued by a cache on a read miss to load a cache line. 
• Coherent Read and Invalidate (CRI): issued by a cache on a write-allocate after a 

write miss. 
• Coherent Invalidate (CI): issued by a cache on a write hit to a block that is in one of 

the shared states. 
• Block Write (WR): issued by a cache on the write-back of a cache block.  
• Coherent Write and Invalidate (CWI): issued by an I/O processor (DMA) on a block 

write (a full block at a time). 
 
In addition to these primary bus transactions, there is: 
• Cache to Cache Intervention (CCI): used by a cache to satisfy other caches’ read 

transactions when appropriate. A CCI intervenes and overrides the answers normally 
supplied by memory. Data should be supplied using CCI whenever possible for faster 
response relative to the memory. However, only the cache that owns the data can 
respond by CCI. 

 
The five possible states of a data block are: 
• Invalid (I): Block is not present in the cache. 
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache 

has it. 
• Owned exclusive (OE): The cached data is different from memory, and no other 

cache has it. This cache is responsible for supplying this data instead of memory 
when other caches request copies of this data. 

• Clean shared (CS): The data has not been modified by the corresponding CPU since 
cached. Multiple CS copies and at most one OS copy of the same data could exist. 

• Owned shared (OS): The data is different from memory. Other CS copies of the same 
data could exist. This cache is responsible for supplying this data instead of memory 
when other caches request copies of this data. (Note, this state can only be entered 
from the OE state.) 

 
 

 


