
Computer Architecture and Engineering

CS152 Quiz #5
April 29, 2010

Professor Krste Asanovic

Name:____ANSWER KEY____

This is a closed book, closed notes exam.
80 Minutes
 10 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam

and budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with students who have not

yet taken the quiz. If you have inadvertently been exposed to the
quiz prior to taking it, you must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers
without giving explanations if the instructions ask you to explain
your choice.

Writing name on each sheet ________ 1 Point
Question 1 ________ 18 Points
Question 2 ________ 15 Points
Question 3 ________ 20 Points
Question 4 ________ 26 Points
TOTAL ________ 80 Points

NAME:_________________________

Problem Q5.1: Sequential Consistency 18 points

In this problem, we consider the implementation of sequential consistency (SC) in a
cache-coherent multiprocessor that uses a snoopy bus. A processor can intervene in a bus
transaction by asserting the retry signal, causing the processor that initiated the request to
attempt it again later. The bus supports only one outstanding cache miss at a time for the
entire system.

Each processor is equipped with a non-blocking data cache that supports hit-under-miss:
while the cache is processing a miss, accesses that hit in the cache can still proceed. The
cache does not support miss-under-miss, so it will block in the event of a second miss. A
processor sends loads and stores to its cache in program order.

Problem Q5.1.A 10 points

Without further modifications, the hit-under-miss scheme can lead to violations of
sequential consistency. Carefully explain why. Additionally, provide a short pseudocode
sequence for two processors that could result in a sequentially inconsistent execution.
Indicate whether each data memory access in your example is a cache hit or miss.

Hit-under-miss enables younger memory accesses that hit in the cache to be made visible
before an older memory access that misses in the cache. Another processor could see
these accesses out of program order, which violates SC.

Assume that variables X and Y start out as 0. Because the write to Y may proceed before
the write to X, the following sequence of accesses could result in r1 = 1, r2 = 0, which is
clearly a violation of SC.

Processor 0 Hit/Miss Processor 1 Hit/Miss

___X=1_____________ ___M____ ___r1=Y____________ ___M____

___Y=1_____________ ___H____ ___r2=X____________ ___H____

NAME:_________________________

Problem Q5.1.B 8 points

Fortunately, it is possible to make the hit-under-miss scheme appear to be sequentially
consistent by leveraging the snoopy bus. Describe how to implement SC while
maintaining hit-under-miss.

Reordering only violates SC if other processors can observe it. The only way for e.g. P1
to observe P0’s accesses is via a bus transaction. So, if P1 initiates a bus transaction
while P0 is servicing a miss that has been hit-under, P0 can tell P1 to retry until the miss
has been resolved. This way, the miss and all subsequent hits are made visible at the
same time.

NAME:_________________________

Problem Q5.2: Relaxed Memory Models 15 points

The following code implements a seqlock, which is a reader-writer lock that supports a
single writer and multiple readers. The writer never has to wait to update the data
protected by the lock, but readers may have to wait if the writer is busy. We use a
seqlock to protect a variable that holds the current time. The lock is necessary because
the variable is 64 bits and thus cannot be read or written atomically on a 32-bit system.

The seqlock is implemented using a sequence number, seqno, which is initially zero. The
writer begins by incrementing seqno. It then writes the new time value, which is split
into the 32-bit values time_lo and time_hi. Finally, it increments seqno again. Thus, if
and only if seqno is odd, the writer is currently updating the counter.

The reader begins by waiting until seqno is even. It then reads time_lo and time_hi.
Finally, it reads seqno again. If seqno didn't change from the first read, then the read was
successful; otherwise, the read is retried.

This code is correct on a sequentially consistent system, but on a system with a fully
relaxed memory model it may not be. Insert the minimum number of memory fences to
make the code correct on a system with a relaxed memory model. To insert a fence, write
the needed fence (MembarLL, MembarLS, MembarSL, MembarSS) in between the lines of
code below.

Writer	
 Reader	

	

 LOAD Rseqno, (seqno)

 ADD Rseqno, Rseqno, 1

 STORE (seqno), Rseqno
 MembarSS

 STORE (time_lo), Rtime_lo

 STORE (time_hi), Rtime_hi
 MembarSS

 ADD Rseqno, Rseqno, 1
	

	

 STORE (seqno), Rseqno	

	

Loop: LOAD Rseqno_before, (seqno)

 IF(Rseqno_before & 1)
 goto Loop
 MembarLL

 LOAD Rtime_lo, (time_lo)

 LOAD Rtime_hi, (time_hi)
 MembarLL

 LOAD Rseqno_after, (seqno)

 IF(Rseqno_before != Rseqno_after)
 goto Loop	

NAME:_________________________

Problem Q5.3: Directory Protocols 20 points

Alice P. Hacker is designing a large-scale cache-coherent multiprocessor. Recalling that
directories are more scalable than snoopy buses, Alice decides to implement a full-map
directory to maintain coherence.

Problem Q5.3.A 6 points

Alice’s first directory design maintains a bit vector for each cache-line-sized block of
main memory. For a given memory block, each bit in the bit vector represents whether or
not one processor in the machine has that line cached. For a 256-processor system with
64B cache lines and 8GB of main memory, how large would Alice’s directory be?

Directory size = (# of cache lines)*(# of processors) bits
 = (8GB/64B)*(256) bits
 = 32 Gbits
 = 4GB

 ________4GB_______

Problem Q5.3.B 6 points

Alice realizes that her initial design might be impractical to implement. She instead
considers a directory organization that supports up to four sharers of a line at a time. If a
fifth processor requests a copy of the line, one of the original four sharers is invalidated.
For each memory line, this approach requires four processor IDs and four valid bits.
Now, how large is Alice’s directory?

Directory size = (# of cache lines)*(4(1 + log2(# of processors))) bits
 = (8GB/64B)*(36) bits
 = 9*0.5 Gbits
 = 576MB

 ________576MB_______

NAME:_________________________

Problem Q5.3.C 8 points

Alice is concerned about the performance of the directory that supports only four sharers
at a time. As a final design alternative, she considers also adding a globally shared bit to
each line. Now, more than four processors can share the line, but if a fifth processor
requests a copy of a cache line, the globally shared bit is set. If some processor attempts
to write a globally shared line, the directory no longer knows precisely which processors
have a copy, so it sends invalidations to all processors in the system.

Consider a program in which all processors in the system are contending for a lock, using
a test-and-test-and-set algorithm. The critical section is sufficiently long that all
processors not in the critical section are spinning on the lock. Which four-sharers
directory organization will perform best: the directory with or without the globally shared
bit? Justify your answer.

For your reference, the test-and-test-and-set lock acquisition algorithm works as follows:

lock(addr):
 while(test-and-set(addr) != 0)
 while(*addr != 0)
 ;
Consider the globally shared bit scheme first. Assume P0 gets the lock first. Then, P1-
P255 will each have one directory transaction to get the line shared, at which point the
directory tells P0 to write back. Then, when P0 releases the lock, it upgrades to exclusive
and P1-P255 are invalidated. About 256 invalidations/downgrades occur per lock
acquisition.

Now, consider the four-sharers scheme. After P0 gets the lock, P1-P255 will try to read
it. However, only four of P1-P255 can have the line shared at once, so they will keep
invalidating each other, even though no writing is occurring! Thus, the number of
invalidations/downgrades per lock acquisition is proportional to the length of the critical
section and could be very large.

The global scheme will use substantially less network bandwidth and will thus perform
better.

NAME:_________________________

Problem Q5.4: Where has all the speedup gone? 26 points

In each of the following problems, we consider a parallel program running on a cache-
coherent, shared-memory multiprocessor. Each program is correct as written but suffers
poor performance.

Problem Q5.4.A 8 points

The following code performs vector-vector addition. The integer P equals the number of
processors running the program, and the integer id contains a given processor’s ID
number, which lies in the range [0, P-1]. N is the vector size; you may assume that N is
large and that P divides N.

int P, id;
int Z[N], X[N], Y[N];

for(int i = id; i < N; i += P)
 Z[i] = X[i] + Y[i];

Unfortunately, false sharing eliminates any hope of parallel speedup. Rewrite the code to
avoid false sharing to the extent possible.

False sharing will be essentially eliminated if the processors operate on contiguous
chunks (i.e. unit-stride).

for(int i = (N/P)*id; i < (N/P)*(id+1); i++)
 Z[i] = X[i] + Y[i];

NAME:_________________________

Problem Q5.4.B 8 points

The following code repeatedly gets data from the bar function and pushes it onto a shared
stack. When this code is running on only a subset of the processors in a system, all other
programs see a noticeable slowdown due to the large number of bus transactions. Rewrite
the code to reduce the frequency of bus transactions.

shared int stack_lock = initially 0;
shared stack s;

while(1)
{
 int foo = bar();

 while(test_and_set(&stack_lock) != 0)
 ;

 s.push(foo);

 stack_lock = 0;
}

Replace the test-and-set lock with a test-and-test-and-set lock. (The code from Q5.3.C
could be used.)

NAME:_________________________

Problem Q5.4.C 5 points

Ben Bitdiddle is computing fast Fourier transforms in parallel, but his parallel speedup is
lower than he would like. Careful analysis of the code indicates that true sharing is
causing a substantial number of coherence misses.

Which of the following changes to the system will reduce the total number of coherence
misses that occur when computing a transform? Circle all that apply, and provide a brief
explanation for each item that you circle.

 a) Increase cache capacity

 b) Reduce the number of processors
 This will reduce the number of coherence misses because less sharing will occur.
 In the limit of 1 processor, no coherence misses can occur.

 c) Increase cache associativity

 d) Add hardware prefetching
 This can hide the effect of coherence misses if data is shared in a pattern that
 is amenable to prefetching.

Problem Q5.4.D 5 points

Consider Ben Bitdiddle’s parallel transform once again. Which of the following changes
to the system will both reduce the number of coherence misses that occur and improve
performance? Circle all that apply, and provide a brief explanation for each.

 a) Increase cache capacity

 b) Reduce the number of processors
 If the system is bus-bandwidth-limited, reducing sharing would reduce total
 bus traffic, so reducing the number of processors may actually improve

performance.

 c) Increase cache associativity

 d) Add hardware prefetching
 If the prefetching is timely and the system isn’t bus-bandwidth-limited, timely
 prefetching will improve performance.

NAME:_________________________

NAME:_________________________

END OF QUIZ

NAME:_________________________

 CS152 Computer Architecture and Design
 Directory-based Cache Coherence Protocol 4/13/2010

Before introducing a directory-based cache coherence protocol, we make the following
assumptions about the interconnection network:

• Message passing is reliable, and free from deadlock, livelock and starvation. In
other words, the transfer latency of any protocol message is finite.

• Message passing is FIFO. That is, protocol messages with the same source and
destination sites are always received in the same order as that in which they were
issued.

Cache states: For each cache line, there are 4 possible states:

• C-invalid (= Nothing): The accessed data is not resident in the cache.
• C-shared (= Sh): The accessed data is resident in the cache, and possibly also

cached at other sites. The data in memory is valid.
• C-modified (= Ex): The accessed data is exclusively resident in this cache, and

has been modified. Memory does not have the most up-to-date data.
• C-transient (= Pending): The accessed data is in a transient state (for example,

the site has just issued a protocol request, but has not received the corresponding
protocol reply).

Home directory states: For each memory block, there are 4 possible states:

• R(dir): The memory block is shared by the sites specified in dir (dir is a set of
sites). The data in memory is valid in this state. If dir is empty (i.e., dir = ε), the
memory block is not cached by any site.

• W(id): The memory block is exclusively cached at site id, and has been modified
at that site. Memory does not have the most up-to-date data.

• TR(dir): The memory block is in a transient state waiting for the
acknowledgements to the invalidation requests that the home site has issued.

• TW(id): The memory block is in a transient state waiting for a block exclusively
cached at site id (i.e., in C-modified state) to make the memory block at the home
site up-to-date.

Protocol messages: There are 10 different protocol messages, which are summarized in
the following table (their meaning will become clear later).

Category Messages
Cache to Memory Requests ShReq, ExReq
Memory to Cache Requests WbReq, InvReq, FlushReq
Cache to Memory Responses WbRep(v), InvRep, FlushRep(v)
Memory to Cache Responses ShRep(v), ExRep(v)

NAME:_________________________

No
.

Current State Handling Message Next State Dequeue
Message?

Action

1 C-nothing Load C-pending No ShReq(id,Home,a)

2 C-nothing Store C-pending No ExReq(id,Home,a)

3 C-nothing WbReq(a) C-nothing Yes None

4 C-nothing FlushReq(a) C-nothing Yes None

5 C-nothing InvReq(a) C-nothing Yes None

6 C-nothing ShRep (a) C-shared Yes updates cache with prefetch data

7 C-nothing ExRep (a) C-exclusive Yes updates cache with data

8 C-shared Load C-shared Yes Reads cache

9 C-shared WbReq(a) C-shared Yes None

10 C-shared FlushReq(a) C-nothing Yes InvRep(id, Home, a)

11 C-shared InvReq(a) C-nothing Yes InvRep(id, Home, a)

12 C-shared ExRep(a) C-exclusive Yes None

13 C-shared (Voluntary Invalidate) C-nothing N/A InvRep(id, Home, a)

14 C-exclusive Load C-exclusive Yes reads cache

15 C-exclusive Store C-exclusive Yes writes cache

16 C-exclusive WbReq(a) C-shared Yes WbRep(id, Home, data(a))

17 C-exclusive FlushReq(a) C-nothing Yes FlushRep(id, Home, data(a))

18 C-exclusive (Voluntary Writeback) C-shared N/A WbRep(id, Home, data(a))

19 C-exclusive (Voluntary Flush) C-nothing N/A FlushRep(id, Home, data(a))

20 C-pending WbReq(a) C-pending Yes None

21 C-pending FlushReq(a) C-pending Yes None

22 C-pending InvReq(a) C-pending Yes None

23 C-pending ShRep(a) C-shared Yes updates cache with data

24 C-pending ExRep(a) C-exclusive Yes update cache with data

Table H12-1: Cache State Transitions

NAME:_________________________

No. Current State Message Received Next State Dequeue

Message?
Action

1 R(dir) & (dir = ε) ShReq(a) R({id}) Yes ShRep(Home, id, data(a))

2 R(dir) & (dir = ε) ExReq(a) W(id) Yes ExRep(Home, id, data(a))

3 R(dir) & (dir = ε) (Voluntary Prefetch) R({id}) N/A ShRep(Home, id, data(a))

4 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ShReq(a) R(dir + {id}) Yes ShRep(Home, id, data(a))

5 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ExReq(a) Tr(dir) No InvReq(Home, dir, a)

6 R(dir) & (id ∉ dir)
& (dir ≠ ε)

(Voluntary Prefetch) R(dir + {id}) N/A ShRep(Home, id, data(a))

7 R(dir) & (dir = {id}) ShReq(a) R(dir) Yes None

8 R(dir) & (dir = {id}) ExReq(a) W(id) Yes ExRep(Home, id, data(a))

9 R(dir) & (dir = {id}) InvRep(a) R(ε) Yes None

10 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ShReq(a) R(dir) Yes None

11 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ExReq(a) Tr(dir-{id}) No InvReq(Home, dir - {id}, a)

12 R(dir) & (id ∈ dir)
& (dir ≠ {id})

InvRep(a) R(dir - {id}) Yes None

13 W(id’) ShReq(a) Tw(id’) No WbReq(Home, id’, a)

14 W(id’) ExReq(a) Tw(id’) No FlushReq(Home, id’, a)

15 W(id) ExReq(a) W(id) Yes None

16 W(id) WbRep(a) R({id}) Yes data -> memory

17 W(id) FlushRep(a) R(ε) Yes data -> memory

18 Tr(dir) & (id ∈ dir) InvRep(a) Tr(dir - {id}) Yes None

19 Tr(dir) & (id ∉ dir) InvRep(a) Tr(dir) Yes None

20 Tw(id) WbRep(a) R({id}) Yes data-> memory

21 Tw(id) FlushRep(a) R(ε) Yes data-> memory

Table H12-2: Home Directory State Transitions, Messages sent from site id

NAME:_________________________

 CS152 Computer Architecture and Design
 Snoopy Cache Coherence Protocol 4/13/2010

We introduce an invalidation coherence protocol for write-back caches similar to those
employed by the SUN MBus. As in most invalidation protocols, only a single cache may
own a modified copy of a cache line at any one time. However, in addition to allowing
multiple shared copies of clean data, multiple shared copies of modified data may also
exist. (Here, modified data refers to data different from memory. When multiple shared
copies of modified data exist, one of the caches owns the current copy of the data instead
of the memory.) All shared copies are invalidated any time a new modified (write) copy
is created.

The MBus transactions with which we are concerned are:
• Coherent Read (CR): issued by a cache on a read miss to load a cache line.
• Coherent Read and Invalidate (CRI): issued by a cache on a write-allocate after a

write miss.
• Coherent Invalidate (CI): issued by a cache on a write hit to a block that is in one of

the shared states.
• Block Write (WR): issued by a cache on the write-back of a cache block.
• Coherent Write and Invalidate (CWI): issued by an I/O processor (DMA) on a block

write (a full block at a time).

In addition to these primary bus transactions, there is:
• Cache to Cache Intervention (CCI): used by a cache to satisfy other caches’ read

transactions when appropriate. A CCI intervenes and overrides the answers normally
supplied by memory. Data should be supplied using CCI whenever possible for faster
response relative to the memory. However, only the cache that owns the data can
respond by CCI.

The five possible states of a data block are:
• Invalid (I): Block is not present in the cache.
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache

has it.
• Owned exclusive (OE): The cached data is different from memory, and no other

cache has it. This cache is responsible for supplying this data instead of memory
when other caches request copies of this data.

• Clean shared (CS): The data has not been modified by the corresponding CPU since
cached. Multiple CS copies and at most one OS copy of the same data could exist.

• Owned shared (OS): The data is different from memory. Other CS copies of the same
data could exist. This cache is responsible for supplying this data instead of memory
when other caches request copies of this data. (Note, this state can only be entered
from the OE state.)

