TA: Andrew Waterman

Problem 1

Suppose we are designing the next version of our company's killer microprocessor. We have made the following measurements from an important customer's favorite floating-point intensive program:

Frequency of floating-point (FP) instructions = 25%Average CPI of FP instructions (excluding square-root) = 4.0Average CPI of integer instructions = 1.33Frequency of floating-point square root (FPSQR) = 2%CPI of FPSQR = 20

We have devised two design alternatives to improve this program's performance. One will decrease the CPI of FPSQR to 2 and the other will decrease the average CPI of all other FP operations to 2.5. Which one will yield the greatest overall improvement in performance? Hint: Consider the Iron Law of Processor Performance.

Problem 2

Ben Bitdiddle is designing a handheld device. However, because the device's storage capacity and battery life are limited, he needs to reduce the size of his code. Therefore, he decides to design variable-length instruction set formats for the handheld device to produce more compact code.

Part A

Ben is trying to decide whether it is worthwhile to have multiple offset lengths for branches. He considers the following formats for a branch instruction.

	Opcode	Reg		BrOff	
39	32	31 24	24 23		
	Opcode	Reg	Br	Off	
31	24	23 16	15	0	
	Opcode	Reg	BrOff]	
23	16	15 8	· 7 0		

For example,

	BEQZ	R3	100	
would	moon if no is	zoro branch to locati	on 100 L DC	

would mean if **R3** is zero, branch to location **100** + **PC**.

He also has the following statistics reflecting the cumulative percentage of branch instructions that can be accommodated with the corresponding number of bits needed to encode the offset.

# Offset Magnitude Bits	Cumulative Branches	# Offset Magnitude Bits	Cumulative Branches
1	2.80%	11	96%
2	10.50%	12	96.80%
3	22.90%	13	97.40%
4	36.50%	14	98.10%
5	57.40%	15	98.50%
6	72.40%	16	99.50%
7	85.20%	17	99.50%
8	90.50%	18	99.80%
9	93.10%	19	100%
10	95.10%	20	100%

On average, how many bits is a branch instruction reduced by using this variable-length offset encoding, compared with the fixed 24-bit offset? Suppose branch instructions account for 10% of the static code. How much do the variable-sized branch offset encodings reduce the total code?

Part B

In order to implement the above variable-length instruction encoding, Ben needs to specify each instruction's length. Since there are 3 possible instruction lengths, he decides to add 2 more bits as the instruction length field.

		0				
0 0	Opcode	Reg		BrOff		
41 40 39	32	31	24	23		0
0 1	Opcode	Reg		В	rOff	
33 32 31	24	- 23	16	15		0
1 0	Opcode	Reg		BrOff		
25 24 23	16	15	8	7	0	

What is the overhead cost of adding these 2 bits? Describe an alternative encoding method to specify the instruction length.

Part C

Without re-running the calculations, do you expect that it would be worthwhile to provide a finer granularity of branch offset length--say, providing offsets of 4,8,12,...,24 bits?

Part D

What are some disadvantages of using variable-length instructions?