
Problem 1
Suppose we are designing the next version of our company’s killer microprocessor. We
have made the following measurements from an important customer’s favorite floating-
point intensive program:

Frequency of floating-point (FP) instructions = 25%
Average CPI of FP instructions (excluding square-root) = 4.0
Average CPI of integer instructions = 1.33
Frequency of floating-point square root (FPSQR) = 2%
CPI of FPSQR = 20

We have devised two design alternatives to improve this program’s performance. One will
decrease the CPI of FPSQR to 2 and the other will decrease the average CPI of all other FP
operations to 2.5. Which one will yield the greatest overall improvement in performance?
Hint: Consider the Iron Law of Processor Performance.

Problem 2
Ben Bitdiddle is designing a handheld device. However, because the device’s storage
capacity and battery life are limited, he needs to reduce the size of his code. Therefore, he
decides to design variable-length instruction set formats for the handheld device to
produce more compact code.

Part A
Ben is trying to decide whether it is worthwhile to have multiple offset lengths for
branches. He considers the following formats for a branch instruction.

OpcodeOpcode RegReg BrOffBrOff

39 32 31 24 23 0

OpcodeOpcode RegReg BrOffBrOff

31 24 23 16 15 0

OpcodeOpcode RegReg BrOffBrOff

23 16 15 8 7 0

For example,
BEQZ R3 100

would mean if R3 is zero, branch to location 100 + PC.

He also has the following statistics reflecting the cumulative percentage of branch
instructions that can be accommodated with the corresponding number of bits needed to
encode the offset.

Section 2: Iron Law & Instruction Encoding CS 152
Spring 2010TA: Andrew Waterman

Offset Magnitude Bits Cumulative Branches # Offset Magnitude Bits Cumulative Branches

1 2.80% 11 96%

2 10.50% 12 96.80%

3 22.90% 13 97.40%

4 36.50% 14 98.10%

5 57.40% 15 98.50%

6 72.40% 16 99.50%

7 85.20% 17 99.50%

8 90.50% 18 99.80%

9 93.10% 19 100%

10 95.10% 20 100%

On average, how many bits is a branch instruction reduced by using this variable-length
offset encoding, compared with the fixed 24-bit offset? Suppose branch instructions
account for 10% of the static code. How much do the variable-sized branch offset
encodings reduce the total code?

Part B
In order to implement the above variable-length instruction encoding, Ben needs to
specify each instruction’s length. Since there are 3 possible instruction lengths, he decides
to add 2 more bits as the instruction length field.
0 00 0 OpcodeOpcode RegReg BrOffBrOff

41 40 39 32 31 24 23 0

0 10 1 OpcodeOpcode RegReg BrOffBrOff

33 32 31 24 23 16 15 0

1 01 0 OpcodeOpcode RegReg BrOffBrOff

25 24 23 16 15 8 7 0
What is the overhead cost of adding these 2 bits? Describe an alternative encoding
method to specify the instruction length.

Part C
Without re-running the calculations, do you expect that it would be worthwhile to provide
a finer granularity of branch offset length--say, providing offsets of 4,8,12,...,24 bits?

Part D
What are some disadvantages of using variable-length instructions?

