CS 152 Computer Architecture and
Engineering

Lecture 2 - Simple Machine
Implementations

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~csl1l52

January 21, 2010 CS152 Spring 2010

Last Time in Lecture 1

Computer Science at crossroads from sequential to
parallel computing

Computer Architecture >> ISAs and RTL

— CS152 is about interaction of hardware and software, and design of
appropriate abstraction layers

Comp. Arch. shaped by technology and applications
— History provides lessons for the future
Cost of software development a large constraint on
architecture
— Compatibility a key solution to software cost
IBM 360 introduces notion of “family of machines”

running same ISA but very different implementations
— Six different machines released on same day (April 7, 1964)
— “Future-proofing” for subsequent generations of machine

January 21, 2010 CS152 Spring 2010

Instruction Set Architecture (ISA)

 The contract between software and hardware

» Typically described by giving all the programmer-
visible state (registers + memory) plus the semantics
of the instructions that operate on that state

« |IBM 360 was first line of machines to separate ISA
from implementation (aka. microarchitecture)

* Many implementations possible for a given ISA

— E.g., today you can buy AMD or Intel processors that run the
x86-64 ISA.

— E.g.2: many cellphones use the ARM ISA with implementations

from many different companies including Tl, Qualcomm, Samsung,
Marvell, etc.

— E.g.3., the Soviets build code-compatible clones of the IBM360, as
did Amdhal after he left IBM.

January 21, 2010 CS152 Spring 2010

Microprogramming

« Today, a brief look at microprogrammed machines
— To show how to build very small processors with complex ISAs
— To help you understand where CISC* machines came from

— Because it is still used in the most common machines (x86,
PowerPC, IBM360)

— As a gentle introduction into machine structures
— To help understand how technology drove the move to RISC*

* CISC/RISC names came much later than the style of machines they
refer to.

January 21, 2010 CS152 Spring 2010 4

ISA to Microarchitecture Mapping

* |ISA often designed with particular microarchitectural style
In mind, e.g.,
— CISC = microcoded
— RISC = hardwired, pipelined
— VLIW = fixed-latency in-order parallel pipelines
- JVM = software interpretation
* But can be implemented with any microarchitectural style
— Intel Nehalem: hardwired pipelined CISC (x86)
machine (with some microcode support)
— Simics: Software-interpreted SPARC RISC machine
— Intel could implement a dynamically scheduled out-
of-order VLIW Itanium (IA-64) processor
— ARM Jazelle: A hardware JVM processor
— This lecture: a microcoded RISC (MIPS) machine

January 21, 2010 CS152 Spring 2010 5

Microarchitecture: Implementation of an ISA

Controller control
status points
lines l l l l_

Data
— — path

] I —

Structure: How components are connected.
Static
Behavior: How data moves between components
Dynamic
January 21, 2010 CS152 Spring 2010 6

Microcontrol Unit Maurice Wilkes, 1954

op cc_)nditional First used in EDSAC-2,
code flip-flop completed 1958
d
/i/ Next state
W address
|
v Matrix A Matrix B
5 4 Embed the control
logic state table in
a memory array

Conlcrol Ii'nes to
ALU, MUXs, Registers

January 21, 2010 CS152 Spring 2010 7

Microcoded Microarchitecture

busy? = .
24V 2] ucontroller [— holds fixed
: microcode instructions
opcode (ROM)
Il
\ 4 \ 4 \ 4 ‘ A ‘ A 4 \ 4 A 4
Datapath
Data Addr
holds user program Memory | cnmem
written in macrocode , (RAM) [Memwrt
instructions (e.q., _ S ‘

MIPS, x86, etc.)
January 21, 2010

CS152 Spring 2010

The MIPS32 ISA

e Processor State
32 32-bit GPRs, RO always contains a O
16 double-precision/32 single-precision FPRs

FP status register, used for FP compares & exceptions
PC, the program counter

some other special registers See H&P
Appendix B for
e Data types full description

8-bit byte, 16-bit half word

32-bit word for integers

32-bit word for single precision floating point
64-bit word for double precision floating point

e Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big-endian mode

All instructions are 32 bits
January 21, 2010 CS152 Spring 2010 9

MIPS Instruction Formats

6 5 5 5 S5 6
ALU 0 rs | rt | rd 0 func | rd < (rs) func (rt)
ALUi |opcodel rs | rt | immediate rt < (rs) op immediate
6 S5 5 16
Mem opcode| rs rt | displacement M[(rs) + displacement]
6 S5 5 16
opcode| rs | offset BEQZ, BNEZ
6 S 2 16
opcode| rs | JR, JALR
6 26
opcode| offset J, JAL

January 21, 2010 CS152 Spring 2010 10

Data Formats and Memory Addresses

Data formats:

Bytes, Half words, words and double words
Some issues

» Byte addressing Most Zﬁl;lﬂcant Least gﬂglﬁcant
Big Endian 0 1 2 3
vs. Little Endian 3 2 1 0.
N\
Byte Addresses

» Word alignment
Suppose the memory is organized in 32-bit words.
Can a word address beginonly at0, 4, 8, ?

January 21, 2010 CS152 Spring 2010 11

A Bus-based Datapath for MIPS

Opcode zero? bu‘:5y
IdIR | f 32(PC IdAMA
OpSel IdA |dB ? ELinL)
24 s {
l l _I_/+ RegSel MA
A4 \ 4 — d v v 3 |
st dd add
IR LS A B addar r
32 GPRs
ExtSel — Yy v« - + PC ... Memory
7;, Igwm ALtU IA\ V / RegWrt MemWrt
xt contro ALU -bi
32-bit Reg enReg
enlmm :7 enALU <7 data data enMem

Microinstruction: register to register transfer (17 control signals)
MA < PC means RegSel = PC; enReg=yes; IdMA= yes

B < Reg[rt] means RegSel =rt; enReg=yes; IdB = yes
January 21, 2010 CS152 Spring 2010 12

Memory Module

I
]

addr busy

RAM we _C _ Write(1)/Read(0)

t— Enable

QV1 dout

Rt
I bus

Assumption: Memory operates independently

and is slow as compared to Reg-to-Reg transfers

(multiple CPU clock cycles per access)
January 21, 2010 CS152 Spring 2010 13

Instruction Execution

Execution of a MIPS instruction involves

. instruction fetch
. decode and register fetch
. ALU operation
. memory operation (optional)
. write back to register file (optional)
+ the computation of the
next instruction address

O D WNE=

January 21, 2010 CS152 Spring 2010 14

Microprogram Fragments

instr fetch: MA < PC
A< PC can be

IR <~ Memory s treated as
PC<—A+4 a macro

dispatch on OPcode

ALU: A < Req|rs]
B < Reg]rt]
Reg(rd] < func(A,B)
do instruction fetch

ALUi: A < Req|rs]
B < Imm sign extension ...

Reg|rt] <~ Opcode(A,B)
do instruction fetch

January 21, 2010 CS152 Spring 2010 15

Microprogram Fragments (cont,)

LW:

beqz:

bz-taken:

January 21, 2010

A < Reg]rs]

B < Imm

MA < A+ B
Reg[rt] < Memory
do instruction fetch

JumpTarg(A,B) =

A < PC {A[31:28],B[25:0],00}

B < IR

PC < JumpTarg(A,B)
do instruction fetch

A < Reg|rs]
If zero?(A) then go to bz-taken
do instruction fetch

A < PC
B<Imm<<?2
PC<— A+ B

do instruction fetch
CS152 Spring 2010 16

MIPS Microcontroller: first attempt

Opcode

zero? 6
Busy (memory)

uPC (state)

ST
. 4 . 4 . 4

addr

ROM size ?
— 2(opcode+status+s) words

uProgram ROM

Word size ? data

How big
iS “S //?

next

state

-l T

Control Signals (17)

January 21, 2010 CS152 Spring 2010

17

Microprogram in the ROM worksheet

State Op zero? busy| Control points next-state
fetch, * * * MA < PC fetch,
fetch, * * yes fetch,
fetch, * * no IR < Memory fetch,
fetch, * * * A < PC fetch,
fetehs—* * * PC—A++4 ?

ALU, * * * A < Reg[rs] ALU,
ALU, * * B < Reg|[rt] ALU,
ALU, * * * Reg[rd] < func(A,B) fetch,

January 21, 2010 CS152 Spring 2010 18

Microprogram in the ROM

State Op zero? busy Control points next-state
fetch, * * * MA < PC fetch,
fetch, * * yes fetch,
fetch, * * no IR < Memory fetch,
fetch, * * * A < PC fetch,
fetch; ALU > * PC<-~A+4 ALU,
fetch; ALUi * * PC—~A+4 ALUi,
fetch; LW * * PC—-A+4 LW,
fetch, SW * * PC—-A+4 SW,
fetch; J * * PC<-~A+4 Jo
fetch; JAL * * PC—~A+4 JAL,
fetch; JR * * PC—~A+4 JR,
fetch; JALR * * PC—-A+4 JALR,
fetch; beqz * * PC—-A+4 beqz,
ALU, * * A < Reg[rs] ALU,
ALU, * * B <— Reg|rt] ALU,
ALU, * * * Reg[rd] < func(A,B) fetch,

January 21, 2010

CS152 Spring 2010

19

Microprogram in the ROM cont.

State Op zero? busy Control points next-state
ALUi, * * * A < Reg[rs] ALUi,
ALUi; sExt * * B < sExt;¢(Imm) ALUi,
ALUi; uExt * * B < ukExt;(Imm) ALUi,
ALUi, * * * Reg[rd]< Op(A,B) fetch,
Jq * * * A < PC 1,
1, * * * B < IR J5
15 * * * PC < JumpTarg(A,B) fetch,
beqz, * * * A < Reg|rs] beqz,
beqz, * yes * A < PC beqz,
beqz, * no * fetch,
beqz, * * * B < sExt;¢(Imm) beqz;
* * * PC <~ A+B fetch,

January 21, 2010

JumpTarg(A,B) = {A[31:28],B[25:0],00}

CS152 Spring 2010

20

Size of Control Store

status & opcode 7
w uPC
addr 13
size = 2W*S)x (c + s) Control ROM next uPC
data
Control signals f C
MIPS: W = 6+2 c=17 s=7

no. of steps per opcode =4 to 6 + fetch-sequence
no. of states = (4 steps per op-group) X op-groups
+ common sequences
=4 x 8 + 10 states =42 states =s =6

Control ROM = 2(8+6) x 23 bits ~ 48 Kbytes
January 21, 2010 CS152 Spring 2010 21

Reducing Control Store Size

Control store has to be fast = expensive
e Reduce the ROM height (= address bits)

— reduce inputs by extra external logic
each input bit doubles the size of the
control store

— reduce states by grouping opcodes
find common sequences of actions

— condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

e Reduce the ROM width

— restrict the next-state encoding
Next, Dispatch on opcode, Wait for memory, ...
— encode control signals (vertical microcode)

January 21, 2010 CS152 Spring 2010 22

CS152 Administrivia

« Lab 1 coming out on Tuesday, together with PS1
« Lab 1 overview in Section, next Thursday, 2pm, 320 Soda
« Lab 1 and PS 1 due start of class Thursday Feb. 11

— No extensions for Problem set. Zero credit afterwards.
— Problem sets graded on 0,1,2 scale

— Up to two free lab extensions per student, up till next class (Tuesday).
Zero credit afterwards.

« Solutions to PS 1 released at end of same class
« Section reviewing PS 1, same Thursday at 2pm
* First Quiz, in class, Tue Feb 16, 9:30-11AM

— Closed book, no calculators, no computers, no cellphones

« PS 2 and Lab 2 handed out day of Quiz 1

January 21, 2010 CS152 Spring 2010 23

Collaboration Policy

« Can collaborate to understand problem sets, but
must turn in own solution. Some problems repeated
from earlier years - do not copy solutions. (Quiz
problems will not be repeated...)

« Each student must complete directed portion of the
lab by themselves. OK to collaborate to understand
how to run labs

— Class news group info on web site.
— Lab reports must be readable English summaries. Zero credit for
handing in output log files from experiments.

« Can work in group of up to 3 students for open-ended
portion of each lab

— OK to be in different group for each lab -just make sure to label
participants’ names clearly on each turned-in lab section

January 21, 2010 CS152 Spring 2010 24

MIPS Controller V2

absolute
Opcode —| ext
oh-grotp || uPC |uPC+1
\ y/
input encodi o +1
input encoding P
reduces ROM height L_* C (state) 1 wPCSre
: _ __zero
address JURMPH sy
logic —
WumpType = Control ROM [
next | spin
| fetch | dispatch data
Tz [e ERRERR
Control Signals (17) next-state encoding

January 21, 2010 CS152 Spring 2010 reduces ROM wigth

Jump Logic

UPCSrc = Case uwJumpTypes

January 21, 2010

next
spin
fetch
dispatch
feqz

fnez

=

— if (busy) then

—
—

> if (zero) then
> if (zero) then

CS152 Spring 2010

else

else

else

26

Instruction Fetch & ALU:mips-controlier-2

State Control points next-state
fetch, MA < PC next
fetch, IR < Memory spin
fetch, A < PC next
fetch, PC—A+4 dispatch
ALU, A < Req[rs] next
ALU, B < Reg[rt] next
ALU, Reg[rd]<func(A,B) fetch
ALUi, A < Reg]rs] next
ALUi, B < sExt;(Imm) next
ALUi, Reg[rd]< Op(A,B) fetch

January 21, 2010 CS152 Spring 2010 27

Load & Store: mips-controlier-2

State

LW,
LW,
LW,
LW,
LW,

SW,
SW,
SW,
SW,
SW,

January 21, 2010

Control points

A < Reqg[rs]

B < sExt;g(Imm)
MA < A+B
Reg[rt] < Memory

A < Reqg[rs]

B < sExt;g(Imm)
MA < A+B
Memory < Reg|[rt]

CS152 Spring 2010

next-state

next
next
next
spin

fetch

next
next
next
spin

fetch

28

Branches: wmips-controller-2

January 21, 2010

State

BEQZ,
BEQZ,
BEQZ,
BEQZ,
BEQZ,

BNEZ,
BNEZ,
BNEZ,
BNEZ,
BNEZ,

Control points

A < Reg|[rs]

A < PC

B < sExt;((Imm<<2)
PC <— A+B

A < Reg|[rs]

A < PC

B < sExt;((Imm<<2)
PC — A+B

CS152 Spring 2010

next-state

next
fnez

next
next
fetch

next
feqz

next
next
fetch

29

JAL,
JAL,
JAL,
JAL,

JALR,
JALR,
JALR,

JALR,

January 21, 2010

Jumps: mips-controlier-2

Control points next-state
A < PC next
B < IR next
PC < JumpTarg(A,B) fetch
A < Reg[rs] next
PC <A fetch
A < PC next
Reg[31] < A next
B < IR next
PC < JumpTarg(A,B) fetch
A < PC next
B < Reg[rs] next
Reg[31] < A next
PC<— B fetch

CS152 Spring 2010

30

VAX 11-780 Microcode

® 1 PIWFUD,!)1600,1205) MICRO2 1F(12) 26=May=81 14:5811 VAX11/780 Microcode : PCS 01, FPLA 0D, wCs122 . ‘age 171
3 CALL2 ,Mic (600,1205) Procedure call ¢ CALLG, CALLS .
® ,gg;:“ JHERE FOR CALLG OR CALLS, AFTER PROBING THE EXTENT OF THE STACK
129745
229746 =0 jeoncecccssnccsncnnnanancnncscne)CALL SITE FOR MPUSH
® 129747 CALL,7: D.Q,AND,RCI[T2), $STRIP MASK TO BITS 11=0
6557K 0 U 11F4, 0811,2035,0180,F910,0000,0CD8 129748 CALL,J/MPUSH ?PUSH REGISTERS
129749
® 229750 joercenannenanennannannenscacencees) RETURN FROM MPUSH
3297514 CACHE.D([LONG), 1PUSH PC
6557K 7763k U 11FS, 0000,003C,0180,3270,0000,134A 129752 LABLR[SP) ! BY SP
'Y 129753
129754 jereecncccrancccnsnasnsennennoane
6856K 0 U 134A, 0018,0000,0180,FAF0,0200,134C 129755 CALL.8t R[SPI&VA_LA=K[,.8) JUPDATE 8P FOR PUSH OF PC &
129756 :
® 21297%7 jerecccsnnccnsncncnnsnnnescnanncn)
6856K 0 U 134C, 0800,003C,0180,FA68,0000,11F8 129758 DRLFP) JREADY TO PUSH FRAME POINTER
$129759
4 229760 =0 e anconscrsnnoncccnsnnnnnennsnss)CALL SITE FOR PSHSP
129761 CACHE.D[LONG],)STORE FP,
® 129762 LAB_R(SP), ?} GET SP AGAIN
s 129763 SC.K[.FFFO), 1=16 TO S8C
6856K 21M U 11F8, 0000,003D,6D80,3270,0084,6CD9 129764 CALL,J/PSHSP
» 129765
229766 jerasecnccrannseenscsnccnasnccnas)
& 129767 D.R(AP], JREADY TO PUSH AP
» 6856K 0 U 11F9, 0800,003C,3DF0,2E60,0000,134D 129768 Q.ID([PSL] ? AND GET PSW FOR COMBINATIO
129769 :
. 2129770 jeneconncanannessonsnncncnnasane)
» 129771 CACHELD(LONG]), $STORE OLD AP
: 129772 Q.0,ANDNOT,K(.1F), $CLEAR PSW<T,N,Z,V,C>
6856K 21M U 134D, 0019,2024,8DC0,3270,0000,134E 129773 LAR.R([SP) JGET SP INTO LATCHES AGAIN
129774 :
» 22977% jragnroncssannepnscesavasnnanena :
6856K 0 U 134E, 2010,0038,0180,F909,4200,1350 129776 PC&VA_RC[T1], FLUSH,IB ? LOAD NEW PC AND CLEAR OUT
129777
» 229778 jempessnnennnccccnsensenssansnens)
$29779 D.DAL,SC,)PSW TO D<31116>
129780 0.RCIT2), JRECOVER MASK
v 129781 $C.SC+K(,31, JPUT =13 IN SC
6856K 0 U 1350, 0D10,0038,0DC0,6114,0084,9351 129782 LOAD,1B, PC.PC+! §START FETCHING SUBROUTINE I
929783
» '29784 jemecccncscancannnccnncacsannnnne)
129785 D.DAL,SC, JMASK AND PSW IN D<31:03>
129786 0RC(T4), #GET LOW BITS OF OLD SP TO Q<1:0>
P gesex 0 U 13%1, 0D10,0038,F5C0,F920,0084,9352 129787 SC.SC+K[,A) JPUT =3 IN SC
: 129788

January 21,2010 CS152 Spring 2010 31

Implementing Complex Instructions

Opcode zero? bu“sy
dIR | 1A dB | 32(PC IdMA
OpSel ? ELin)
21 —5 {
l l \—|—/+ RegSel MA
v v —>rd v v 3 |
— It
IR Bgis A B addr addr
32 GPRs
ExtSel — y v - . + PC ... Memory
o[1mm]| [AU v RegWrt MemWirt
2 Ext control ALU 32-bit Reg | R
| . ENREg «
enImm <7 enALU <7 data data enMem
— —>
Bus ,32

rd <— M[(rs)] op (rt) Reg-Memory-src ALU op
M[(rd)] < (rs) op (rt) Reg-Memory-dst ALU op

M[(rd)] < M[(rs)] op M[(rt)] Mem-Mem ALU op
January 21, 2010 CS152 Spring 2010 32

Mem-Mem ALU Instructions:
MIPS-Controller-2

Mem-Mem ALU op M[(rd)] < M[(rs)] op M[(rt)]
ALUMM, MA < Reg]rs] next
ALUMM; A < Memory spin
ALUMM, MA < Reg[rt] next
ALUMM; B < Memory spin
ALUMM, MA <Reg[rd] next
ALUMM: Memory < func(A,B) spin
ALUMM, fetch

Complex instructions usually do not require datapath
modifications in a microprogrammed implementation
-- only extra space for the control program

Implementing these instructions using a hardwired
controller is difficult without datapath modifications

January 21, 2010 CS152 Spring 2010 33

Performance Issues

Microprogrammed control
= multiple cycles per instruction

Cycle time ?
tC > max(treg-regl tALUI tMROM)

Suppose 10 * t rom < tram
Good performance, relative to a single-cycle

hardwired implementation, can be achieved
even with a CPI of 10

January 21, 2010 CS152 Spring 2010 34

Horizontal vs Vertical uCode

. Bits per ulnstruction

ulnstructions

I I v

« Horizontal ucode has wider uinstructions
— Multiple parallel operations per uinstruction
— Fewer microcode steps per macroinstruction
— Sparser encoding = more bits

* Vertical ucode has narrower uinstructions

— Typically a single datapath operation per uinstruction
— separate uinstruction for branches

— More microcode steps per macroinstruction
— More compact = less bits

* Nanocoding
— Tries to combine best of horizontal and vertical ucode

January 21, 2010 CS152 Spring 2010 35

Nanocoding

Exploits I_‘ecurring WPC (state) ucode
control signal patterns I next-state
in ucode, e.g., uaddress

ucode ROM
ALU, A < Reg[rs]

nanoaddress |

ALUiy A < Reg[rs]
N nanoinstruction ROM
data

NREREREN

« MC68000 had 17-bit ucode containing either 10-bit ujump or
9-bit nanoinstruction pointer

— Nanoinstructions were 68 bits wide, decoded to give 196
control signals

January 271, 20710 CS152 Spring 2010 36

Microprogramming in IBM 360

M30 M40 M50 M65
Datapath width 8 16 32 64
(bits)
uinst width 50 52 85 87
(bits)
ucode size 4 4 2.75 2.75
(K pinsts)
ustore CCROS| TCROS| BCROS BCROS
technology
?stc;re cycle 750 625 500 200
ns
Ene;nory cycle 1500 2500 2000 750
ns
Rental fee 4 7 15 35
($K/month)

Only the fastest models (75 and 95) were hardwired
CS152 Spring 2010

January 21, 2010

37

IBM Card Capa‘_\g:itor ad-OnIy Storage

7)

sensing
plates

2, e
A
..“- A
o
ﬁ i

T 1BM Journal, January 1961]
January 21, 2010 CS152 Spring 2010 38

Microcode Emulation

 |IBM initially miscalculated the importance of software
compatibility with earlier models when introducing the

360 series

* Honeywell stole some IBM 1401 customers by offering
translation software (“Liberator”) for Honeywell H200

series machine

 IBM retaliated with optional additional microcode for 360
series that could emulate IBM 1401 ISA, later extended
for IBM 7000 series

— one popular program on 1401 was a 650 simulator, so some
customers ran many 650 programs on emulated 1401s

— (650 simulated on 1401 emulated on 360)

January 21, 2010 CS152 Spring 2010 39

Microprogramming thrived in the
Seventies

« Significantly faster ROMs than DRAMs were available

 For complex instruction sets, datapath and controller
were cheaper and simpler

* New instructions , e.g., floating point, could be supported
without datapath modifications

* Fixing bugs in the controller was easier

« |SA compatibility across various models could be
achieved easily and cheaply

Except for the cheapest and fastest machines,
all computers were microprogrammed

January 21, 2010 CS152 Spring 2010 40

Writable Control Store (WCS)

* Implement control store in RAM not ROM
— MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)
— Bug-free microprograms difficult to write

« User-WCS provided as option on several minicomputers
— Allowed users to change microcode for each processor

« User-WCS failed

— Little or no programming tools support

— Difficult to fit software into small space

— Microcode control tailored to original ISA, less useful for others
— Large WCS part of processor state - expensive context switches
— Protection difficult if user can change microcode

— Virtual memory required restartable microcode

January 21, 2010 CS152 Spring 2010 41

Microprogramming: early Eighties

Evolution bred more complex micro-machines
— Complex instruction sets led to need for subroutine and call stacks in pcode

— Need for fixing bugs in control programs was in conflict with read-only nature of
MROM

— =2>WCS (B1700, QMachine, Intel i432, ...)

With the advent of VLSI technology assumptions about ROM & RAM
speed became invalid > more complexity

Better compilers made complex instructions less important.

Use of numerous micro-architectural innovations, e.g., pipelining,
caches and buffers, made multiple-cycle execution of reg-reg
Instructions unattractive

Looking ahead to RISC next time

— Use chip area to build fast instruction cache of user-visible vertical
microinstructions - use software subroutine not hardware microroutines

— Use simple ISA to enable hardwired pipelined implementation

January 21, 2010 CS152 Spring 2010 42

Modern Usage

e Microprogramming is far from extinct

e Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

e Microcode pays an assisting role in most modern

MICroS (AMD Phenom, Intel Nehalem, Intel Atom, IBM PowerPC)
e Most instructions are executed directly, i.e., with hard-wired
control
e Infrequently-used and/or complicated instructions invoke the
microcode engine

e Patchable microcode common for post-fabrication
bug fixes, e.qg. Intel processors load pcode patches
at bootup

January 21, 2010 CS152 Spring 2010 43

Acknowledgements

* These slides contain material developed and
copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

« MIT material derived from course 6.823
 UCB material derived from course CS252

January 21, 2010 CS152 Spring 2010 44

