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Last Time in Lecture 1 
•  Computer Science at crossroads from sequential to 

parallel computing 
•  Computer Architecture >> ISAs and RTL 

–  CS152 is about interaction of hardware and software, and design of 
appropriate abstraction layers 

•  Comp. Arch. shaped by technology and applications 
–  History provides lessons for the future 

•  Cost of software development a large constraint on 
architecture 

–  Compatibility a key solution to software cost 

•  IBM 360 introduces notion of “family of machines” 
running same ISA but very different implementations 

–  Six different machines released on same day (April 7, 1964) 
–  “Future-proofing” for subsequent generations of machine 



January 21, 2010 CS152 Spring 2010 

Instruction Set Architecture (ISA) 
•  The contract between software and hardware 
•  Typically described by giving all the programmer-

visible state (registers + memory) plus the semantics 
of the instructions that operate on that state 

•  IBM 360 was first line of machines to separate ISA 
from implementation (aka. microarchitecture) 

•  Many implementations possible for a given ISA 
–  E.g., today you can buy AMD or Intel processors that run the 

x86-64 ISA. 
–  E.g.2: many cellphones use the ARM ISA with implementations 

from many different companies including TI, Qualcomm, Samsung, 
Marvell, etc. 

–  E.g.3., the Soviets build code-compatible clones of the IBM360, as 
did Amdhal after he left IBM. 

3 
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Microprogramming 

•  Today, a brief look at microprogrammed machines 
–  To show how to build very small processors with complex ISAs 
–  To help you understand where CISC* machines came from 
–  Because it is still used in the most common machines (x86, 

PowerPC, IBM360) 
–  As a gentle introduction into machine structures 
–  To help understand how technology drove the move to RISC* 

* CISC/RISC names came much later than the style of machines they 
refer to. 
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ISA to Microarchitecture Mapping 
• ISA often designed with particular microarchitectural style 

in mind, e.g., 
–  CISC  ⇒ microcoded 
–  RISC  ⇒ hardwired, pipelined 
–  VLIW  ⇒ fixed-latency in-order parallel pipelines 
–  JVM  ⇒ software interpretation 

• But can be implemented with any microarchitectural style 
–  Intel Nehalem: hardwired pipelined CISC (x86) 

machine (with some microcode support) 
–  Simics: Software-interpreted SPARC RISC machine 
–  Intel could implement a dynamically scheduled out-

of-order VLIW Itanium (IA-64) processor 
–  ARM Jazelle: A hardware JVM processor 
–  This lecture: a microcoded RISC (MIPS) machine 
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Microarchitecture: Implementation of an ISA 

Structure:  How components are connected.  
                                                Static 
Behavior:   How data moves between components  
                                                Dynamic 

Controller 

Data 
path 

control 
points status 

lines 
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Microcontrol Unit  Maurice Wilkes, 1954      

Embed the control 
logic state table in 
a memory array 

Matrix A Matrix B 

Decoder 

Next state 

op      conditional 
code   flip-flop 

µ  address 

Control lines  to 
ALU, MUXs, Registers 

First used in EDSAC-2, 
completed 1958 

Memory 
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Microcoded Microarchitecture 

Memory 
(RAM) 

Datapath 

µcontroller 
(ROM) 

Addr Data 

zero? 
busy? 

opcode 

enMem 
MemWrt 

holds fixed 
microcode instructions  

holds user program 
written in macrocode 

instructions (e.g., 
MIPS, x86, etc.) 
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The MIPS32 ISA 

•  Processor State 
32 32-bit GPRs, R0 always contains a 0 
16 double-precision/32 single-precision FPRs 
FP status register, used for FP compares & exceptions 
PC, the program counter 
some other special registers 

•  Data types 
8-bit byte, 16-bit half word  
32-bit word for integers 
32-bit word for single precision floating point 
64-bit word for double precision floating point 

•  Load/Store style instruction set 
data addressing modes- immediate & indexed 
branch addressing modes- PC relative & register indirect 
Byte addressable memory- big-endian mode 

   All instructions are 32 bits 

See H&P 
Appendix B for 
full description 
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MIPS Instruction Formats 

    6     5  5        16 
opcode    rs                    offset   BEQZ, BNEZ 

    6                        26 
opcode                 offset    J, JAL 

    6    5  5              16 
opcode    rs      JR, JALR 

opcode    rs  rt    immediate       rt ← (rs) op immediate 

     6     5   5       5       5          6 
     0     rs  rt       rd       0       func    rd ← (rs) func (rt) ALU 

ALUi 

      6      5  5               16 
opcode   rs  rt         displacement         M[(rs) + displacement] Mem 
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Data formats:       
 Bytes, Half words, words and double words 

Some issues 
•  Byte addressing 

   Big Endian   0  1  2  3 
  vs. Little Endian   3  2  1  0 

•  Word alignment  
Suppose the memory is organized in 32-bit words. 
Can a word address begin only at 0, 4, 8, .... ? 

Data Formats and Memory Addresses 

     0         1           2          3          4           5           6          7  

Most Significant 
Byte 

Least Significant 
Byte 

Byte Addresses 
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A Bus-based Datapath for MIPS 

Microinstruction: register to register transfer  (17 control signals) 
   MA  ← PC      means   RegSel = PC;   enReg=yes;    ldMA= yes 

B  ← Reg[rt] means 

enMem 

MA 

addr 

data 

ldMA 

Memory 

busy 

MemWrt 

Bus 32 

zero? 

 A  B 

OpSel ldA ldB 

ALU 

enALU 

ALU 
control 

2 

RegWrt 
enReg 

addr 

data 

rs 
rt 
rd 
32(PC) 
31(Link) 

RegSel 

32 GPRs 
+ PC ... 

32-bit Reg 

3 

rs 
rt 
rd 

ExtSel 

IR 

Opcode 

ldIR 

Imm 
Ext 

enImm 

2 

RegSel = rt;    enReg=yes;    ldB   = yes 
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Memory Module 

Assumption: Memory operates independently 
and is slow as compared to Reg-to-Reg transfers 
(multiple CPU clock cycles per access) 

Enable 
Write(1)/Read(0) RAM 

din dout 

we 

addr busy 

bus 
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Instruction Execution 

Execution of a MIPS instruction involves 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. memory operation (optional) 
5. write back to register file (optional) 

 + the computation of the  
     next instruction address 
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Microprogram Fragments 

instr fetch:  MA ← PC 
    A ← PC 

 IR ← Memory 
 PC ← A + 4 
 dispatch on OPcode 

can be 
treated as 
a macro 

ALU:    A ← Reg[rs] 
 B ← Reg[rt]   
 Reg[rd] ←  func(A,B) 
 do instruction fetch 

ALUi:    A ← Reg[rs] 
 B ← Imm   sign extension ... 
 Reg[rt] ← Opcode(A,B) 
 do instruction fetch 
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Microprogram Fragments (cont.) 

LW:    A ← Reg[rs] 
 B ← Imm 
 MA ← A + B 
 Reg[rt] ← Memory 
 do instruction fetch  

J:    A ← PC 
 B ← IR 
 PC ← JumpTarg(A,B) 
 do instruction fetch  

beqz:   A ← Reg[rs] 
  If zero?(A) then go to bz-taken 
  do instruction fetch  

bz-taken:  A ← PC 
 B ← Imm << 2 
 PC ← A + B 
 do instruction fetch  

JumpTarg(A,B) =  
{A[31:28],B[25:0],00} 
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MIPS Microcontroller: first attempt 

next 
state 

µPC (state) 

Opcode 
zero? 

Busy (memory) 

Control Signals (17) 

s 

s 

6 

µProgram ROM 

addr 

data 

= 2(opcode+status+s) words 

How big 
is “s”? 

ROM size ? 

Word size ? 
= control+s bits 
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Microprogram in the ROM worksheet 
State  Op    zero?    busy     Control points       next-state 

fetch0   *  *  *  MA ← PC   fetch1 
fetch1   *  *  yes         ....   fetch1 
fetch1   *  *  no  IR ← Memory  fetch2 
fetch2   *  *  *  A ← PC   fetch3 
fetch3   *  *  *  PC ← A + 4   ? 

ALU0  *  *  *  A ← Reg[rs]   ALU1 
ALU1  *  *  *  B ← Reg[rt]   ALU2 
ALU2  *  *  *  Reg[rd] ← func(A,B) fetch0 

fetch3   ALU  *  *  PC ← A + 4   ALU0 
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Microprogram in the ROM 
State  Op    zero?    busy        Control points  next-state 

fetch0   *  *  *  MA ← PC   fetch1 
fetch1   *  *  yes         ....   fetch1 
fetch1   *  *  no  IR ← Memory  fetch2 
fetch2   *  *  *  A ← PC   fetch3 
fetch3  ALU  *  *  PC ← A + 4   ALU0 
fetch3  ALUi  *  *  PC ← A + 4   ALUi0 
fetch3  LW  *  *  PC ← A + 4   LW0 
fetch3  SW  *  *  PC ← A + 4   SW0 
fetch3  J  *  *  PC ← A + 4   J0 
fetch3  JAL  *  *  PC ← A + 4   JAL0 
fetch3  JR  *  *  PC ← A + 4   JR0 
fetch3  JALR  *  *  PC ← A + 4   JALR0 
fetch3  beqz  *  *  PC ← A + 4   beqz0  
 ... 
ALU0  *  *  *  A ← Reg[rs]   ALU1 
ALU1  *  *  *  B ← Reg[rt]   ALU2 
ALU2  *  *  *  Reg[rd] ← func(A,B) fetch0 
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Microprogram in the ROM Cont. 

State  Op    zero?    busy        Control points  next-state 

ALUi0  *  *  *  A ← Reg[rs]   ALUi1 
ALUi1  sExt  *  *  B ← sExt16(Imm)  ALUi2 
ALUi1  uExt  *  *  B ← uExt16(Imm)  ALUi2 
ALUi2  *  *  *  Reg[rd]← Op(A,B)  fetch0 
... 
J0   *  *  *  A ← PC   J1 
J1   *  *  *  B ← IR   J2 
J2   *  *  *  PC ← JumpTarg(A,B) fetch0 
 ... 
beqz0   *  *  *  A ← Reg[rs]   beqz1 
beqz1   *  yes  *  A ← PC   beqz2 
beqz1   *  no  *         ....   fetch0 
beqz2   *  *  *  B ← sExt16(Imm)  beqz3 
beqz3   *  *  *  PC ← A+B   fetch0 
 ... 

    JumpTarg(A,B) = {A[31:28],B[25:0],00} 
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Size of Control Store 

MIPS:   w = 6+2   c = 17  s = ? 
no. of steps per opcode = 4 to 6 + fetch-sequence 
no. of states ≈ (4 steps per op-group ) x op-groups  

     + common sequences 
        = 4 x 8 + 10 states = 42 states ⇒ s = 6 

      Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes 

size = 2(w+s) x (c + s)  Control ROM 

data 

status & opcode 

addr 

next µPC 

Control signals 

 µPC 
/ 
w 

/  s 

/  c 
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Reducing Control Store Size  

•  Reduce the ROM height (= address bits) 
–  reduce inputs by extra external logic 

each input bit doubles the size of the  
control store 

–  reduce states by grouping opcodes  
find common sequences of actions 

–  condense input status bits 
combine all exceptions into one, i.e., 
exception/no-exception 

•  Reduce the ROM width 
–  restrict the next-state encoding 

Next, Dispatch on opcode, Wait for memory, ... 
–  encode control signals (vertical microcode) 

Control store has to be fast ⇒ expensive 



January 21, 2010 CS152 Spring 2010 23 

CS152 Administrivia 
•  Lab 1 coming out on Tuesday, together with PS1 
•  Lab 1 overview in Section, next Thursday, 2pm, 320 Soda 
•  Lab 1 and PS 1 due start of class Thursday Feb. 11 

–  No extensions for Problem set. Zero credit afterwards. 
–  Problem sets graded on 0,1,2 scale 
–  Up to two free lab extensions per student, up till next class (Tuesday).  

Zero credit afterwards. 

•  Solutions to PS 1 released at end of same class  
•  Section reviewing PS 1, same Thursday at 2pm 
•  First Quiz, in class, Tue Feb 16, 9:30-11AM 

–  Closed book, no calculators, no computers, no cellphones 

•  PS 2 and Lab 2 handed out day of Quiz 1 
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Collaboration Policy 
•  Can collaborate to understand problem sets, but 

must turn in own solution.  Some problems repeated 
from earlier years - do not copy solutions.  (Quiz 
problems will not be repeated…) 

•  Each student must complete directed portion of the 
lab by themselves.  OK to collaborate to understand 
how to run labs 

–  Class news group info on web site. 
–  Lab reports must be readable English summaries.  Zero credit for 

handing in output log files from experiments. 

•  Can work in group of up to 3 students for open-ended 
portion of each lab 

–  OK to be in different group for each lab -just make sure to label 
participants’ names clearly on each turned-in lab section 
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MIPS Controller V2 

µJumpType = 
   next  | spin 
 | fetch | dispatch 
 | feqz  | fnez  

Control Signals (17) 

Control ROM 

address 

data 

+1  

Opcode ext 

µPC (state) 

jump 
logic 

zero 

µPC µPC+1 

absolute 

op-group 

busy 

µPCSrc input encoding 
reduces ROM height  

next-state encoding 
reduces ROM width  
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Jump Logic 

µPCSrc = Case   µJumpTypes 

next  ⇒  µPC+1 

spin  ⇒  if (busy) then µPC else µPC+1  

fetch  ⇒  absolute 

dispatch  ⇒  op-group  

feqz  ⇒  if (zero) then absolute else µPC+1 

fnez  ⇒  if (zero) then µPC+1 else absolute 
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Instruction Fetch & ALU:MIPS-Controller-2 

State    Control points         next-state 

fetch0   MA ← PC    
fetch1    IR  ← Memory   
fetch2    A   ← PC   
fetch3   PC ← A + 4    
 ... 
ALU0   A   ← Reg[rs]    
ALU1   B   ← Reg[rt]    
ALU2   Reg[rd]←func(A,B)   

ALUi0   A ← Reg[rs]    
ALUi1   B ← sExt16(Imm)   
ALUi2   Reg[rd]← Op(A,B)   

next 
spin 
next 
dispatch 

next 
next 
fetch 

next 
next 
fetch 
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Load & Store: MIPS-Controller-2 

State    Control points           next-state 

LW0   A   ← Reg[rs]  next    
LW1   B   ← sExt16(Imm)  next 
LW2   MA ← A+B   next 
LW3   Reg[rt] ← Memory  spin 
LW4      fetch 

SW0   A   ← Reg[rs]  next    
SW1   B   ← sExt16(Imm)  next 
SW2   MA ← A+B   next 
SW3   Memory ← Reg[rt]  spin 
SW4      fetch 
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Branches: MIPS-Controller-2  

State    Control points            next-state 

BEQZ0   A ← Reg[rs]     next 
BEQZ1        fnez  
BEQZ2    A ← PC     next 
BEQZ3    B ← sExt16(Imm<<2)  next 
BEQZ4    PC ← A+B     fetch 

BNEZ0   A ← Reg[rs]     next 
BNEZ1        feqz 
BNEZ2    A ← PC     next 
BNEZ3    B ← sExt16(Imm<<2)  next 
BNEZ4    PC ← A+B     fetch 
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Jumps: MIPS-Controller-2 

State    Control points         next-state 

J0    A   ← PC   next 
J1    B   ← IR   next 
J2    PC ← JumpTarg(A,B) fetch 

JR0    A   ←  Reg[rs]  next 
JR1    PC ← A   fetch 

JAL0    A   ← PC   next  
JAL1    Reg[31] ← A   next  
JAL2    B   ← IR   next 
JAL3    PC ← JumpTarg(A,B) fetch 

JALR0    A ← PC   next  
JALR1    B ← Reg[rs]   next 
JALR2    Reg[31] ← A   next  
JALR3    PC ←  B    fetch  
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VAX 11-780 Microcode 
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Implementing Complex Instructions 

ExtSel 

 A  B 

RegWrt 
enReg 

enMem 

MA 

addr addr 

data data 

rs 
rt 
rd 
32(PC) 
31(Link) 

RegSel 

OpSel ldA ldB ldMA 

Memory 
32 GPRs 
+ PC ... 

32-bit Reg ALU 

enALU 

Bus 

IR 

busy zero? Opcode 

ldIR 

Imm 
Ext 

enImm 

2 
ALU 

control 

2 

3 

MemWrt 

32 

rs 
rt 
rd 

rd ← M[(rs)] op (rt)    Reg-Memory-src ALU op  
M[(rd)] ← (rs) op (rt)   Reg-Memory-dst ALU op  
M[(rd)] ← M[(rs)] op M[(rt)]  Mem-Mem ALU op 
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Mem-Mem ALU Instructions:  
MIPS-Controller-2 

Mem-Mem ALU op          M[(rd)] ← M[(rs)] op M[(rt)] 

ALUMM0  MA ← Reg[rs]  next 
ALUMM1  A   ← Memory  spin 
ALUMM2  MA ← Reg[rt]  next 
ALUMM3  B   ← Memory  spin 
ALUMM4  MA ←Reg[rd]   next 
ALUMM5  Memory ← func(A,B) spin 
ALUMM6     fetch 

Complex instructions usually do not require datapath 
modifications in a microprogrammed implementation  

 -- only extra space for the control program 

Implementing these instructions using a hardwired 
controller is difficult without datapath modifications 
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Performance Issues 
Microprogrammed control  

 ⇒  multiple cycles per instruction 

Cycle time ?  
tC > max(treg-reg, tALU, tµROM) 

Suppose  10 * tµROM < tRAM 

Good performance, relative to a single-cycle 
hardwired implementation, can be achieved 
even with a CPI of 10  
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Horizontal vs Vertical µCode 

•  Horizontal µcode has wider µinstructions 
– Multiple parallel operations per µinstruction 
–  Fewer microcode steps per macroinstruction 
–  Sparser encoding ⇒ more bits 

•  Vertical µcode has narrower µinstructions 
–  Typically a single datapath operation per µinstruction 

– separate µinstruction for branches 
– More microcode steps per macroinstruction 
– More compact  ⇒ less bits 

•  Nanocoding 
–  Tries to combine best of horizontal and vertical µcode 

# µInstructions 

Bits per µInstruction 
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Nanocoding 

•  MC68000 had 17-bit µcode containing either 10-bit µjump or 
9-bit nanoinstruction pointer 
– Nanoinstructions were 68 bits wide, decoded to give 196 

control signals 

µcode ROM 

nanoaddress 

µcode  
next-state 

µaddress 

µPC (state) 

nanoinstruction ROM 
data 

Exploits recurring 
control signal patterns 
in µcode, e.g.,  

ALU0  A ← Reg[rs]  
... 
ALUi0 A ← Reg[rs] 
... 
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Microprogramming in IBM 360 

  Only the fastest models (75 and 95) were hardwired 

M30 M40 M50 M65 
Datapath width 
(bits) 

8 16 32 64 

µinst width 
(bits) 

50 52 85 87 

µcode size 
(K µinsts) 

4 4 2.75 2.75 

µstore 
technology 

CCROS TCROS BCROS BCROS 

µstore cycle 
(ns) 

750 625 500 200 

memory cycle 
(ns) 

1500 2500 2000 750 

Rental fee 
($K/month) 

4 7 15 35 
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IBM Card Capacitor Read-Only Storage 

38 
[ IBM Journal, January 1961] 

Punched Card with 
metal film 

Fixed 
sensing 
plates 
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Microcode Emulation 

•  IBM initially miscalculated the importance of software 
compatibility with earlier models when introducing the 
360 series 

•  Honeywell stole some IBM 1401 customers by offering 
translation software (“Liberator”) for Honeywell H200 
series machine 

•  IBM retaliated with optional additional microcode for 360 
series that could emulate IBM 1401 ISA, later extended 
for IBM 7000 series 

–  one popular program on 1401 was a 650 simulator, so some 
customers ran many 650 programs on emulated 1401s 

–   (650 simulated on 1401 emulated on 360) 
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Microprogramming thrived in the 
Seventies 

•  Significantly faster ROMs than DRAMs were available 
•  For complex instruction sets, datapath and controller 

were cheaper and simpler  
•  New instructions , e.g., floating point, could be supported 

without datapath modifications 
•  Fixing bugs in the controller was easier 
•  ISA compatibility across various models could be 

achieved easily and cheaply 

Except for the cheapest and fastest machines, 
all computers were microprogrammed 
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 Writable Control Store (WCS) 
•  Implement control store in RAM not ROM 

– MOS SRAM memories now almost as fast as control store (core 
memories/DRAMs were 2-10x slower) 

–  Bug-free microprograms difficult to write 

•  User-WCS provided as option on several minicomputers 
–  Allowed users to change microcode for each processor 

•  User-WCS failed 
–  Little or no programming tools support 
– Difficult to fit software into small space 
– Microcode control tailored to original ISA, less useful for others 
–  Large WCS part of processor state - expensive context switches 
–  Protection difficult if user can change microcode 
–  Virtual memory required restartable microcode 
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Microprogramming: early Eighties 
•  Evolution bred more complex micro-machines 

–  Complex instruction sets led to need for subroutine and call stacks in µcode 
–  Need for fixing bugs in control programs was in conflict with read-only nature of 
µROM  

–  WCS  (B1700, QMachine, Intel i432, …) 

•  With the advent of VLSI technology assumptions about ROM & RAM 
speed became invalid more complexity 

•  Better compilers made complex instructions less important. 
•  Use of numerous micro-architectural innovations, e.g., pipelining, 

caches and buffers, made multiple-cycle execution of reg-reg 
instructions unattractive 

•  Looking ahead to RISC next time 
–  Use chip area to build fast instruction cache of user-visible vertical 

microinstructions - use software subroutine not hardware microroutines 
–  Use simple ISA to enable hardwired pipelined implementation 
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Modern Usage 
•  Microprogramming is far from extinct 

•  Played a crucial role in micros of the Eighties 
DEC uVAX, Motorola 68K series, Intel 386 and 486 

•  Microcode pays an assisting role in most modern 
micros (AMD Phenom, Intel Nehalem, Intel Atom, IBM PowerPC) 

•  Most instructions are executed directly, i.e., with hard-wired 
   control 
•  Infrequently-used and/or complicated instructions invoke the 
   microcode engine 

•  Patchable microcode common for post-fabrication 
   bug fixes, e.g. Intel processors load µcode patches 
   at bootup 
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