
January 21, 2010 CS152 Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 2 - Simple Machine
Implementations

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

January 21, 2010 CS152 Spring 2010 2

Last Time in Lecture 1
•  Computer Science at crossroads from sequential to

parallel computing
•  Computer Architecture >> ISAs and RTL

–  CS152 is about interaction of hardware and software, and design of
appropriate abstraction layers

•  Comp. Arch. shaped by technology and applications
–  History provides lessons for the future

•  Cost of software development a large constraint on
architecture

–  Compatibility a key solution to software cost

•  IBM 360 introduces notion of “family of machines”
running same ISA but very different implementations

–  Six different machines released on same day (April 7, 1964)
–  “Future-proofing” for subsequent generations of machine

January 21, 2010 CS152 Spring 2010

Instruction Set Architecture (ISA)
•  The contract between software and hardware
•  Typically described by giving all the programmer-

visible state (registers + memory) plus the semantics
of the instructions that operate on that state

•  IBM 360 was first line of machines to separate ISA
from implementation (aka. microarchitecture)

•  Many implementations possible for a given ISA
–  E.g., today you can buy AMD or Intel processors that run the

x86-64 ISA.
–  E.g.2: many cellphones use the ARM ISA with implementations

from many different companies including TI, Qualcomm, Samsung,
Marvell, etc.

–  E.g.3., the Soviets build code-compatible clones of the IBM360, as
did Amdhal after he left IBM.

3

January 21, 2010 CS152 Spring 2010 4

Microprogramming

•  Today, a brief look at microprogrammed machines
–  To show how to build very small processors with complex ISAs
–  To help you understand where CISC* machines came from
–  Because it is still used in the most common machines (x86,

PowerPC, IBM360)
–  As a gentle introduction into machine structures
–  To help understand how technology drove the move to RISC*

* CISC/RISC names came much later than the style of machines they
refer to.

January 21, 2010 CS152 Spring 2010 5

ISA to Microarchitecture Mapping
• ISA often designed with particular microarchitectural style

in mind, e.g.,
–  CISC ⇒ microcoded
–  RISC ⇒ hardwired, pipelined
–  VLIW ⇒ fixed-latency in-order parallel pipelines
–  JVM ⇒ software interpretation

• But can be implemented with any microarchitectural style
–  Intel Nehalem: hardwired pipelined CISC (x86)

machine (with some microcode support)
–  Simics: Software-interpreted SPARC RISC machine
–  Intel could implement a dynamically scheduled out-

of-order VLIW Itanium (IA-64) processor
–  ARM Jazelle: A hardware JVM processor
–  This lecture: a microcoded RISC (MIPS) machine

January 21, 2010 CS152 Spring 2010 6

Microarchitecture: Implementation of an ISA

Structure: How components are connected.
 Static
Behavior: How data moves between components
 Dynamic

Controller

Data
path

control
points status

lines

January 21, 2010 CS152 Spring 2010 7

Microcontrol Unit Maurice Wilkes, 1954

Embed the control
logic state table in
a memory array

Matrix A Matrix B

Decoder

Next state

op conditional
code flip-flop

µ address

Control lines to
ALU, MUXs, Registers

First used in EDSAC-2,
completed 1958

Memory

January 21, 2010 CS152 Spring 2010 8

Microcoded Microarchitecture

Memory
(RAM)

Datapath

µcontroller
(ROM)

Addr Data

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions

holds user program
written in macrocode

instructions (e.g.,
MIPS, x86, etc.)

January 21, 2010 CS152 Spring 2010 9

The MIPS32 ISA

•  Processor State
32 32-bit GPRs, R0 always contains a 0
16 double-precision/32 single-precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

•  Data types
8-bit byte, 16-bit half word
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

•  Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big-endian mode

 All instructions are 32 bits

See H&P
Appendix B for
full description

January 21, 2010 CS152 Spring 2010 10

MIPS Instruction Formats

 6 5 5 16
opcode rs offset BEQZ, BNEZ

 6 26
opcode offset J, JAL

 6 5 5 16
opcode rs JR, JALR

opcode rs rt immediate rt ← (rs) op immediate

 6 5 5 5 5 6
 0 rs rt rd 0 func rd ← (rs) func (rt) ALU

ALUi

 6 5 5 16
opcode rs rt displacement M[(rs) + displacement] Mem

January 21, 2010 CS152 Spring 2010 11

Data formats:
 Bytes, Half words, words and double words

Some issues
•  Byte addressing

 Big Endian 0 1 2 3
 vs. Little Endian 3 2 1 0

•  Word alignment
Suppose the memory is organized in 32-bit words.
Can a word address begin only at 0, 4, 8, ?

Data Formats and Memory Addresses

 0 1 2 3 4 5 6 7

Most Significant
Byte

Least Significant
Byte

Byte Addresses

January 21, 2010 CS152 Spring 2010 12

A Bus-based Datapath for MIPS

Microinstruction: register to register transfer (17 control signals)
 MA ← PC means RegSel = PC; enReg=yes; ldMA= yes

B ← Reg[rt] means

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

 A B

OpSel ldA ldB

ALU

enALU

ALU
control

2

RegWrt
enReg

addr

data

rs
rt
rd
32(PC)
31(Link)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs
rt
rd

ExtSel

IR

Opcode

ldIR

Imm
Ext

enImm

2

RegSel = rt; enReg=yes; ldB = yes

January 21, 2010 CS152 Spring 2010 13

Memory Module

Assumption: Memory operates independently
and is slow as compared to Reg-to-Reg transfers
(multiple CPU clock cycles per access)

Enable
Write(1)/Read(0) RAM

din dout

we

addr busy

bus

January 21, 2010 CS152 Spring 2010 14

Instruction Execution

Execution of a MIPS instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)

 + the computation of the
 next instruction address

January 21, 2010 CS152 Spring 2010 15

Microprogram Fragments

instr fetch: MA ← PC
 A ← PC

 IR ← Memory
 PC ← A + 4
 dispatch on OPcode

can be
treated as
a macro

ALU: A ← Reg[rs]
 B ← Reg[rt]
 Reg[rd] ← func(A,B)
 do instruction fetch

ALUi: A ← Reg[rs]
 B ← Imm sign extension ...
 Reg[rt] ← Opcode(A,B)
 do instruction fetch

January 21, 2010 CS152 Spring 2010 16

Microprogram Fragments (cont.)

LW: A ← Reg[rs]
 B ← Imm
 MA ← A + B
 Reg[rt] ← Memory
 do instruction fetch

J: A ← PC
 B ← IR
 PC ← JumpTarg(A,B)
 do instruction fetch

beqz: A ← Reg[rs]
 If zero?(A) then go to bz-taken
 do instruction fetch

bz-taken: A ← PC
 B ← Imm << 2
 PC ← A + B
 do instruction fetch

JumpTarg(A,B) =
{A[31:28],B[25:0],00}

January 21, 2010 CS152 Spring 2010 17

MIPS Microcontroller: first attempt

next
state

µPC (state)

Opcode
zero?

Busy (memory)

Control Signals (17)

s

s

6

µProgram ROM

addr

data

= 2(opcode+status+s) words

How big
is “s”?

ROM size ?

Word size ?
= control+s bits

January 21, 2010 CS152 Spring 2010 18

Microprogram in the ROM worksheet
State Op zero? busy Control points next-state

fetch0 * * * MA ← PC fetch1
fetch1 * * yes fetch1
fetch1 * * no IR ← Memory fetch2
fetch2 * * * A ← PC fetch3
fetch3 * * * PC ← A + 4 ?

ALU0 * * * A ← Reg[rs] ALU1
ALU1 * * * B ← Reg[rt] ALU2
ALU2 * * * Reg[rd] ← func(A,B) fetch0

fetch3 ALU * * PC ← A + 4 ALU0

January 21, 2010 CS152 Spring 2010 19

Microprogram in the ROM
State Op zero? busy Control points next-state

fetch0 * * * MA ← PC fetch1
fetch1 * * yes fetch1
fetch1 * * no IR ← Memory fetch2
fetch2 * * * A ← PC fetch3
fetch3 ALU * * PC ← A + 4 ALU0
fetch3 ALUi * * PC ← A + 4 ALUi0
fetch3 LW * * PC ← A + 4 LW0
fetch3 SW * * PC ← A + 4 SW0
fetch3 J * * PC ← A + 4 J0
fetch3 JAL * * PC ← A + 4 JAL0
fetch3 JR * * PC ← A + 4 JR0
fetch3 JALR * * PC ← A + 4 JALR0
fetch3 beqz * * PC ← A + 4 beqz0
 ...
ALU0 * * * A ← Reg[rs] ALU1
ALU1 * * * B ← Reg[rt] ALU2
ALU2 * * * Reg[rd] ← func(A,B) fetch0

January 21, 2010 CS152 Spring 2010 20

Microprogram in the ROM Cont.

State Op zero? busy Control points next-state

ALUi0 * * * A ← Reg[rs] ALUi1
ALUi1 sExt * * B ← sExt16(Imm) ALUi2
ALUi1 uExt * * B ← uExt16(Imm) ALUi2
ALUi2 * * * Reg[rd]← Op(A,B) fetch0
...
J0 * * * A ← PC J1
J1 * * * B ← IR J2
J2 * * * PC ← JumpTarg(A,B) fetch0
 ...
beqz0 * * * A ← Reg[rs] beqz1
beqz1 * yes * A ← PC beqz2
beqz1 * no * fetch0
beqz2 * * * B ← sExt16(Imm) beqz3
beqz3 * * * PC ← A+B fetch0
 ...

 JumpTarg(A,B) = {A[31:28],B[25:0],00}

January 21, 2010 CS152 Spring 2010 21

Size of Control Store

MIPS: w = 6+2 c = 17 s = ?
no. of steps per opcode = 4 to 6 + fetch-sequence
no. of states ≈ (4 steps per op-group) x op-groups

 + common sequences
 = 4 x 8 + 10 states = 42 states ⇒ s = 6

 Control ROM = 2(8+6) x 23 bits ≈ 48 Kbytes

size = 2(w+s) x (c + s) Control ROM

data

status & opcode

addr

next µPC

Control signals

 µPC
/
w

/ s

/ c

January 21, 2010 CS152 Spring 2010 22

Reducing Control Store Size

•  Reduce the ROM height (= address bits)
–  reduce inputs by extra external logic

each input bit doubles the size of the
control store

–  reduce states by grouping opcodes
find common sequences of actions

–  condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

•  Reduce the ROM width
–  restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
–  encode control signals (vertical microcode)

Control store has to be fast ⇒ expensive

January 21, 2010 CS152 Spring 2010 23

CS152 Administrivia
•  Lab 1 coming out on Tuesday, together with PS1
•  Lab 1 overview in Section, next Thursday, 2pm, 320 Soda
•  Lab 1 and PS 1 due start of class Thursday Feb. 11

–  No extensions for Problem set. Zero credit afterwards.
–  Problem sets graded on 0,1,2 scale
–  Up to two free lab extensions per student, up till next class (Tuesday).

Zero credit afterwards.

•  Solutions to PS 1 released at end of same class
•  Section reviewing PS 1, same Thursday at 2pm
•  First Quiz, in class, Tue Feb 16, 9:30-11AM

–  Closed book, no calculators, no computers, no cellphones

•  PS 2 and Lab 2 handed out day of Quiz 1

January 21, 2010 CS152 Spring 2010 24

Collaboration Policy
•  Can collaborate to understand problem sets, but

must turn in own solution. Some problems repeated
from earlier years - do not copy solutions. (Quiz
problems will not be repeated…)

•  Each student must complete directed portion of the
lab by themselves. OK to collaborate to understand
how to run labs

–  Class news group info on web site.
–  Lab reports must be readable English summaries. Zero credit for

handing in output log files from experiments.

•  Can work in group of up to 3 students for open-ended
portion of each lab

–  OK to be in different group for each lab -just make sure to label
participants’ names clearly on each turned-in lab section

January 21, 2010 CS152 Spring 2010 25

MIPS Controller V2

µJumpType =
 next | spin
 | fetch | dispatch
 | feqz | fnez

Control Signals (17)

Control ROM

address

data

+1

Opcode ext

µPC (state)

jump
logic

zero

µPC µPC+1

absolute

op-group

busy

µPCSrc input encoding
reduces ROM height

next-state encoding
reduces ROM width

January 21, 2010 CS152 Spring 2010 26

Jump Logic

µPCSrc = Case µJumpTypes

next ⇒ µPC+1

spin ⇒ if (busy) then µPC else µPC+1

fetch ⇒ absolute

dispatch ⇒ op-group

feqz ⇒ if (zero) then absolute else µPC+1

fnez ⇒ if (zero) then µPC+1 else absolute

January 21, 2010 CS152 Spring 2010 27

Instruction Fetch & ALU:MIPS-Controller-2

State Control points next-state

fetch0 MA ← PC
fetch1 IR ← Memory
fetch2 A ← PC
fetch3 PC ← A + 4
 ...
ALU0 A ← Reg[rs]
ALU1 B ← Reg[rt]
ALU2 Reg[rd]←func(A,B)

ALUi0 A ← Reg[rs]
ALUi1 B ← sExt16(Imm)
ALUi2 Reg[rd]← Op(A,B)

next
spin
next
dispatch

next
next
fetch

next
next
fetch

January 21, 2010 CS152 Spring 2010 28

Load & Store: MIPS-Controller-2

State Control points next-state

LW0 A ← Reg[rs] next
LW1 B ← sExt16(Imm) next
LW2 MA ← A+B next
LW3 Reg[rt] ← Memory spin
LW4 fetch

SW0 A ← Reg[rs] next
SW1 B ← sExt16(Imm) next
SW2 MA ← A+B next
SW3 Memory ← Reg[rt] spin
SW4 fetch

January 21, 2010 CS152 Spring 2010 29

Branches: MIPS-Controller-2

State Control points next-state

BEQZ0 A ← Reg[rs] next
BEQZ1 fnez
BEQZ2 A ← PC next
BEQZ3 B ← sExt16(Imm<<2) next
BEQZ4 PC ← A+B fetch

BNEZ0 A ← Reg[rs] next
BNEZ1 feqz
BNEZ2 A ← PC next
BNEZ3 B ← sExt16(Imm<<2) next
BNEZ4 PC ← A+B fetch

January 21, 2010 CS152 Spring 2010 30

Jumps: MIPS-Controller-2

State Control points next-state

J0 A ← PC next
J1 B ← IR next
J2 PC ← JumpTarg(A,B) fetch

JR0 A ← Reg[rs] next
JR1 PC ← A fetch

JAL0 A ← PC next
JAL1 Reg[31] ← A next
JAL2 B ← IR next
JAL3 PC ← JumpTarg(A,B) fetch

JALR0 A ← PC next
JALR1 B ← Reg[rs] next
JALR2 Reg[31] ← A next
JALR3 PC ← B fetch

January 21, 2010 CS152 Spring 2010 31

VAX 11-780 Microcode

January 21, 2010 CS152 Spring 2010 32

Implementing Complex Instructions

ExtSel

 A B

RegWrt
enReg

enMem

MA

addr addr

data data

rs
rt
rd
32(PC)
31(Link)

RegSel

OpSel ldA ldB ldMA

Memory
32 GPRs
+ PC ...

32-bit Reg ALU

enALU

Bus

IR

busy zero? Opcode

ldIR

Imm
Ext

enImm

2
ALU

control

2

3

MemWrt

32

rs
rt
rd

rd ← M[(rs)] op (rt) Reg-Memory-src ALU op
M[(rd)] ← (rs) op (rt) Reg-Memory-dst ALU op
M[(rd)] ← M[(rs)] op M[(rt)] Mem-Mem ALU op

January 21, 2010 CS152 Spring 2010 33

Mem-Mem ALU Instructions:
MIPS-Controller-2

Mem-Mem ALU op M[(rd)] ← M[(rs)] op M[(rt)]

ALUMM0 MA ← Reg[rs] next
ALUMM1 A ← Memory spin
ALUMM2 MA ← Reg[rt] next
ALUMM3 B ← Memory spin
ALUMM4 MA ←Reg[rd] next
ALUMM5 Memory ← func(A,B) spin
ALUMM6 fetch

Complex instructions usually do not require datapath
modifications in a microprogrammed implementation

 -- only extra space for the control program

Implementing these instructions using a hardwired
controller is difficult without datapath modifications

January 21, 2010 CS152 Spring 2010 34

Performance Issues
Microprogrammed control

 ⇒ multiple cycles per instruction

Cycle time ?
tC > max(treg-reg, tALU, tµROM)

Suppose 10 * tµROM < tRAM

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

January 21, 2010 CS152 Spring 2010 35

Horizontal vs Vertical µCode

•  Horizontal µcode has wider µinstructions
– Multiple parallel operations per µinstruction
–  Fewer microcode steps per macroinstruction
–  Sparser encoding ⇒ more bits

•  Vertical µcode has narrower µinstructions
–  Typically a single datapath operation per µinstruction

– separate µinstruction for branches
– More microcode steps per macroinstruction
– More compact ⇒ less bits

•  Nanocoding
–  Tries to combine best of horizontal and vertical µcode

µInstructions

Bits per µInstruction

January 21, 2010 CS152 Spring 2010 36

Nanocoding

•  MC68000 had 17-bit µcode containing either 10-bit µjump or
9-bit nanoinstruction pointer
– Nanoinstructions were 68 bits wide, decoded to give 196

control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring
control signal patterns
in µcode, e.g.,

ALU0 A ← Reg[rs]
...
ALUi0 A ← Reg[rs]
...

January 21, 2010 CS152 Spring 2010 37

Microprogramming in IBM 360

 Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65
Datapath width
(bits)

8 16 32 64

µinst width
(bits)

50 52 85 87

µcode size
(K µinsts)

4 4 2.75 2.75

µstore
technology

CCROS TCROS BCROS BCROS

µstore cycle
(ns)

750 625 500 200

memory cycle
(ns)

1500 2500 2000 750

Rental fee
($K/month)

4 7 15 35

January 21, 2010 CS152 Spring 2010

IBM Card Capacitor Read-Only Storage

38
[IBM Journal, January 1961]

Punched Card with
metal film

Fixed
sensing
plates

January 21, 2010 CS152 Spring 2010 39

Microcode Emulation

•  IBM initially miscalculated the importance of software
compatibility with earlier models when introducing the
360 series

•  Honeywell stole some IBM 1401 customers by offering
translation software (“Liberator”) for Honeywell H200
series machine

•  IBM retaliated with optional additional microcode for 360
series that could emulate IBM 1401 ISA, later extended
for IBM 7000 series

–  one popular program on 1401 was a 650 simulator, so some
customers ran many 650 programs on emulated 1401s

–  (650 simulated on 1401 emulated on 360)

January 21, 2010 CS152 Spring 2010 40

Microprogramming thrived in the
Seventies

•  Significantly faster ROMs than DRAMs were available
•  For complex instruction sets, datapath and controller

were cheaper and simpler
•  New instructions , e.g., floating point, could be supported

without datapath modifications
•  Fixing bugs in the controller was easier
•  ISA compatibility across various models could be

achieved easily and cheaply

Except for the cheapest and fastest machines,
all computers were microprogrammed

January 21, 2010 CS152 Spring 2010 41

 Writable Control Store (WCS)
•  Implement control store in RAM not ROM

– MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)

–  Bug-free microprograms difficult to write

•  User-WCS provided as option on several minicomputers
–  Allowed users to change microcode for each processor

•  User-WCS failed
–  Little or no programming tools support
– Difficult to fit software into small space
– Microcode control tailored to original ISA, less useful for others
–  Large WCS part of processor state - expensive context switches
–  Protection difficult if user can change microcode
–  Virtual memory required restartable microcode

January 21, 2010 CS152 Spring 2010 42

Microprogramming: early Eighties
•  Evolution bred more complex micro-machines

–  Complex instruction sets led to need for subroutine and call stacks in µcode
–  Need for fixing bugs in control programs was in conflict with read-only nature of
µROM

–  WCS (B1700, QMachine, Intel i432, …)

•  With the advent of VLSI technology assumptions about ROM & RAM
speed became invalid more complexity

•  Better compilers made complex instructions less important.
•  Use of numerous micro-architectural innovations, e.g., pipelining,

caches and buffers, made multiple-cycle execution of reg-reg
instructions unattractive

•  Looking ahead to RISC next time
–  Use chip area to build fast instruction cache of user-visible vertical

microinstructions - use software subroutine not hardware microroutines
–  Use simple ISA to enable hardwired pipelined implementation

January 21, 2010 CS152 Spring 2010 43

Modern Usage
•  Microprogramming is far from extinct

•  Played a crucial role in micros of the Eighties
DEC uVAX, Motorola 68K series, Intel 386 and 486

•  Microcode pays an assisting role in most modern
micros (AMD Phenom, Intel Nehalem, Intel Atom, IBM PowerPC)

•  Most instructions are executed directly, i.e., with hard-wired
 control
•  Infrequently-used and/or complicated instructions invoke the
 microcode engine

•  Patchable microcode common for post-fabrication
 bug fixes, e.g. Intel processors load µcode patches
 at bootup

January 21, 2010 CS152 Spring 2010 44

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

