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Last Time in Lecture 2 

•   ISA is the hardware/software interface 
– Defines set of programmer visible state 
– Defines instruction format (bit encoding) and instruction semantics 
–  Examples: MIPS, x86, IBM 360, JVM 

•   Many possible implementations of one ISA 
–  360 implementations: model 30 (c. 1964), z10 (c. 2008) 
–  x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium, 

Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, AMD 
Athlon, Transmeta Crusoe, SoftPC 

– MIPS implementations: R2000, R4000, R10000, R18K, … 
–  JVM: HotSpot, PicoJava, ARM Jazelle, ... 

2 
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Last Time in Lecture 2 
•  When microcode appeared, different technologies for: 

–  Logic -> Vacuum Tubes 
– Main Memory -> Magnetic cores 
– Read-Only Memory -> Diode matrix, punched metal cards,+++ 

•  Logic was expensive, and ROM much faster than RAM 
•  Microcoding was a straightforward methodical way to 

implement machines with low logic gate count 
•  Microcode made it easy to add complex instructions 
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“Iron Law” of Processor Performance 

4 

      Time     =   Instructions         Cycles            Time 
   Program           Program    *   Instruction   *   Cycle 

–  Instructions per program depends on source code, compiler 
technology, and ISA 

– Cycles per instructions (CPI) depends upon the ISA and the 
microarchitecture 

– Time per cycle depends upon the microarchitecture and the 
base technology 
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Inst 3 

CPI for Microcoded Machine 

5 

7 cycles 

Inst 1 Inst 2 

5 cycles 10 cycles 

Total clock cycles = 7+5+10 = 22 

Total instructions = 3 

CPI = 22/3 = 7.33  

CPI is always an average over a large 
number of instructions 

Time 
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When to add a new complex 
instruction? 
•  Does it improve performance? 
•  How much does it cost? 
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First Microprocessor 
Intel 4004, 1971 

•  4-bit accumulator 
architecture 

•  8µm pMOS 
•  2,300 transistors 
•  3 x 4 mm2 
•  750kHz clock 
•  8-16 cycles/inst. 

7 

Made possible by new integrated circuit technology 
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Microprocessors in the Seventies 
Initial target was embedded control 
•  First micro, 4-bit 4004 from Intel, designed for a desktop printing 

calculator 

Constrained by what could fit on single chip 
•  Single accumulator architectures similar to earliest computers 
•  Hardwired state machine control 

8-bit micros (8085, 6800, 6502) used in hobbyist personal 
computers 

•  Micral, Altair, TRS-80, Apple-II 
•  Usually had 16-bit address space (up to 64KB directly addressable) 

Often came with simple BASIC language interpreter built 
into ROM or loaded from cassette tape. 

8 
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VisiCalc – the first 
“killer” app for micros 

•  Microprocessors had 
little impact on 
conventional computer 
market until VisiCalc 
spreadsheet for Apple-II 
•  Apple-II used Mostek 
6502 microprocessor 
running at 1MHz 

` 

9 
[ Personal Computing Ad, 1979 ] 

Floppy disk drives were 
originally invented by IBM as 
a way of shipping IBM 360 
microcode patches to 
customers! 
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DRAM in the Seventies 

Dramatic progress in MOSFET memory 
technology 

1970, Intel introduces first DRAM, 1Kbit 1103 

1979, Fujitsu introduces 64Kbit DRAM 

=> By mid-Seventies, obvious that PCs would 
soon have >64KBytes physical memory 

10 
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Microprocessor Evolution 
Rapid progress in size and speed through 70s fueled by advances in 

MOSFET technology and expanding markets 
Intel i432 

–  Most ambitious seventies’ micro; started in 1975 - released 1981 
–  32-bit capability-based object-oriented architecture 
–  Instructions variable number of bits long 
–  Severe performance, complexity, and usability problems 

Motorola 68000 (1979, 8MHz, 68,000 transistors) 
–  Heavily microcoded (and nanocoded) 
–  32-bit general purpose register architecture (24 address pins) 
–  8 address registers, 8 data registers 

Intel 8086 (1978, 8MHz, 29,000 transistors) 
–  “Stopgap” 16-bit processor, architected in 10 weeks 
–  Extended accumulator architecture, assembly-compatible with 8080 
–  20-bit addressing through segmented addressing scheme 

11 
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IBM PC, 1981 
Hardware 
•  Team from IBM building PC prototypes in 1979 
•  Motorola 68000 chosen initially, but 68000 was late 
•  IBM builds “stopgap” prototypes using 8088 boards from Display 

Writer word processor 
•  8088 is 8-bit bus version of 8086 => allows cheaper system 
•  Estimated sales of 250,000 
•  100,000,000s sold 

Software 
•  Microsoft negotiates to provide OS for IBM.  Later buys and modifies 

QDOS from Seattle Computer Products. 

Open System 
•  Standard processor, Intel 8088 
•  Standard interfaces 
•  Standard OS, MS-DOS 
•  IBM permits cloning and third-party software 

12 
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[ Personal Computing Ad, 11/81] 
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Analyzing Microcoded Machines 
•  John Cocke and group at IBM 

–  Working on a simple pipelined processor, 801, and advanced 
compilers inside IBM 

–  Ported experimental PL.8 compiler to IBM 370, and only used 
simple register-register and load/store instructions similar to 801 

–  Code ran faster than other existing compilers that used all 370 
instructions! (up to 6MIPS whereas 2MIPS considered good 
before) 

•  Emer, Clark, at DEC 
–  Measured VAX-11/780 using external hardware 
–  Found it was actually a 0.5MIPS machine, although usually 

assumed to be a 1MIPS machine 
–  Found 20% of VAX instructions responsible for 60% of microcode, 

but only account for 0.2% of execution 

•  VAX8800 
–  Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM 
–   4.5x more microstore RAM than cache RAM! 

14 
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IC Technology Changes Tradeoffs 
•  Logic, RAM, ROM all implemented using MOS 

transistors 
•  Semiconductor RAM ~same speed as ROM 

15 
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Nanocoding 

•  MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer 

– Nanoinstructions were 68 bits wide, decoded to give 196 control 
signals 

µcode ROM 

nanoaddress 

µcode  
next-state 

µaddress 

µPC (state) 

nanoinstruction ROM 
data 

Exploits recurring 
control signal patterns 
in µcode, e.g.,  

ALU0  A ← Reg[rs]  
... 
ALUi0 A ← Reg[rs] 
... 
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From CISC to RISC 
•  Use fast RAM to build fast instruction cache of 

user-visible instructions, not fixed hardware 
microroutines 

– Can change contents of fast instruction memory to fit what 
application needs right now 

•  Use simple ISA to enable hardwired pipelined 
implementation 

– Most compiled code only used a few of the available CISC 
instructions 

–  Simpler encoding allowed pipelined implementations 

•  Further benefit with integration 
–  In early ‘80s, could finally fit 32-bit datapath + small caches 

on a single chip 
– No chip crossings in common case allows faster operation 
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Berkeley RISC Chips 

18 

RISC-I (1982) Contains 44,420 transistors, 
fabbed in 5 µm NMOS, with a die area of 
77 mm2, ran at 1 MHz. This chip is 
probably the first VLSI RISC. 

RISC-II (1983) contains 40,760 
transistors, was fabbed in 3 µm 
NMOS, ran at 3 MHz, and the size 
is 60 mm2.   

Stanford built some too… 
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CS152 Administrivia 
•  PS1 available later today 
•  Lab 1 available before section on Thursday 

–  Scott Beamer standing in for Andrew in Section on Thursday 
2-3:30pm, in 320 Soda 
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“Iron Law” of Processor Performance 
      Time     =   Instructions         Cycles            Time 
   Program           Program    *   Instruction   *   Cycle 

–  Instructions per program depends on source code, compiler 
technology, and ISA 

– Cycles per instructions (CPI) depends upon the ISA and the 
microarchitecture 

– Time per cycle depends upon the microarchitecture and the 
base technology 

Microarchitecture CPI cycle time 
Microcoded >1 short 
Single-cycle unpipelined 1 long 
Pipelined 1 short 

this lecture 
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Hardware Elements 

•  Combinational circuits 
–  Mux, Decoder, ALU, ... 

•  Synchronous state elements 
–  Flipflop, Register, Register file, SRAM, DRAM 

Edge-triggered: Data is sampled at the rising edge 

Clk  

D 

Q 

En ff 

Q 

D 

Clk 
En 

OpSelect 
     - Add, Sub, ... 
     - And, Or, Xor, Not, ... 
     - GT, LT, EQ, Zero, ... 

Result 

Comp? 

A 

B 

ALU 

Sel 

O 
A0 
A1 

An-1 

Mux . . .

lg(n) 

A 

D
ec

od
er

 

. . .

O0 
O1 

On-1 

lg(n) 
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Register Files 

ReadData1 ReadSel1 
ReadSel2 

    WriteSel 

Register  
file 

2R+1W 

ReadData2 

    WriteData 

WE Clock 

rd1 rs1 

rs2 

ws 
wd 

rd2 

we 

•  Reads are combinational 

ff 

Q0 

D0 

Clk 
En 

ff 

Q1 

D1 

ff 

Q2 

D2 

ff 

Qn-1 

Dn-1 

... 

... 

... 

register 
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Register File Implementation 

reg 31 

ws clk 

reg 1 

wd 

we 

rs1 
rd1 rd2 

reg 0 

…
 

32 

…
 

5 32 32 

…
 

rs2 5 
5 

•  Register files with a large number of ports are difficult to design 
–  Almost all MIPS instructions have exactly 2 register source operands  
–  Intel’s Itanium, GPR File has 128 registers with 8 read ports and 4 write 

ports!!!  
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A Simple Memory Model 

MAGIC 
 RAM 

ReadData 

WriteData 

Address 

WriteEnable 
Clock 

Reads and writes are always completed in one cycle 
•  a Read can be done any time (i.e. combinational) 
•  a Write is performed at the rising clock edge 
   if it is enabled      

  ⇒    the write address and data 
        must be stable at the clock edge 

Later in the course we will present a more realistic 
model of memory 
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Implementing MIPS: 

Single-cycle per instruction 
datapath & control logic 

(Should be review of CS61C) 
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The MIPS ISA 
Processor State 

32 32-bit GPRs, R0 always contains a 0 
32 single precision FPRs, may also be viewed as 

16 double precision FPRs 
FP status register, used for FP compares & exceptions 
PC, the program counter 
some other special registers 

Data types 
8-bit byte, 16-bit half word  
32-bit word for integers 
32-bit word for single precision floating point 
64-bit word for double precision floating point 

Load/Store style instruction set 
data addressing modes- immediate & indexed 
branch addressing modes- PC relative & register indirect 
Byte addressable memory- big endian mode 

   All instructions are 32 bits 
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Instruction Execution 

Execution of an instruction involves 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. memory operation (optional) 
5. write back 

and the computation of the address of the  
next instruction 
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Datapath: Reg-Reg ALU Instructions 

RegWrite Timing? 
     6     5   5       5       5          6 
     0     rs  rt       rd       0       func       rd ← (rs) func (rt) 
31        26  25      21 20     16 15       11             5             0 

0x4 
Add 

clk 

addr 
inst 

Inst. 
Memory 

PC 

inst<25:21> 
inst<20:16> 

inst<15:11> 

inst<5:0> 

OpCode 

z 
ALU 

ALU 
Control 

RegWrite 

clk 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 
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Datapath: Reg-Imm ALU Instructions 

     6     5   5         16 
opcode    rs  rt    immediate       rt ← (rs) op immediate 

31         26 25       2120      16 15                                     0 

Imm 
Ext 

ExtSel 

inst<15:0> 

OpCode 

0x4 
Add 

clk 

addr 
inst 

Inst. 
Memory 

PC 

z 
ALU 

RegWrite 

clk 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we inst<25:21> 

inst<20:16> 

inst<31:26> ALU 
Control 
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Conflicts in Merging Datapath 

Imm 
Ext 

ExtSel OpCode 

0x4 
Add 

clk 

addr 
inst 

Inst. 
Memory 

PC 

z 
ALU 

RegWrite 

clk 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we inst<25:21> 

inst<20:16> 

inst<15:0> 

inst<31:26> ALU 
Control 

inst<15:11> 

inst<5:0> 

opcode    rs  rt    immediate       rt ← (rs) op immediate 

     6     5   5       5       5          6 
     0     rs  rt       rd       0       func    rd ← (rs) func (rt) 

Introduce 
muxes 
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Datapath for ALU Instructions 

<31:26>, <5:0> 

opcode    rs  rt    immediate       rt ← (rs) op immediate 

     6     5   5       5       5          6 
     0     rs  rt       rd       0       func    rd ← (rs) func (rt) 

BSrc 
Reg / Imm 

RegDst 
rt / rd 

Imm 
Ext 

ExtSel OpCode 

0x4 
Add 

clk 

addr 
inst 

Inst. 
Memory 

PC 

z 
ALU 

RegWrite 

clk 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we <25:21> 
<20:16> 

<15:0> 

OpSel 

ALU 
Control 

<15:11> 
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Datapath for Memory Instructions 
Should program and data memory be separate? 

Harvard style: separate (Aiken and Mark 1 influence) 
- read-only program memory 
-  read/write data memory 

-  Note: 
Somehow there must be a way to load the 
program memory  

Princeton style: the same (von Neumann’s influence) 
-  single read/write memory for program and data 

-  Note:  
A Load or Store instruction requires  
   accessing the memory more than once  
   during its execution 
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Load/Store Instructions:Harvard Datapath  
WBSrc 

ALU / Mem 

rs is the base register 
rt is the destination of a Load or the source for a Store 

      6      5  5               16                   addressing mode 
opcode   rs  rt         displacement         (rs) + displacement 

31        26  25      21 20     16 15                                      0 

RegDst BSrc 

“base” 

disp 

ExtSel OpCode OpSel 

ALU 
Control 

z 
ALU 

0x4 
Add 

clk 

addr 
inst 

Inst. 
Memory 

PC 

RegWrite 

clk 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

Imm 
Ext 

clk 

MemWrite 

addr 

wdata 

rdata 
Data  
Memory 

we 
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MIPS Control Instructions 
Conditional (on GPR) PC-relative branch 

Unconditional register-indirect jumps 

Unconditional absolute jumps 

•  PC-relative branches add offset×4 to PC+4 to calculate the 
target address (offset is in words): ±128 KB range 

•  Absolute jumps append target×4 to PC<31:28> to calculate 
the target address: 256 MB range 

•  jump-&-link stores PC+4 into the link register (R31) 
•  All Control Transfers are delayed by 1 instruction 

we will worry about the branch delay slot later 

    6     5  5        16 
opcode    rs                    offset   BEQZ, BNEZ 

    6                        26 
opcode                 target    J, JAL 

    6    5  5              16 
opcode    rs      JR, JALR 
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Conditional Branches (BEQZ, BNEZ) 

0x4 

Add 

PCSrc 

clk 

WBSrc MemWrite 

addr 

wdata 

rdata 
Data  
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we 

RegDst BSrc ExtSel OpCode 

z 
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PC rd1 

GPRs 
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ws 
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we 
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br 
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Register-Indirect Jumps (JR) 

0x4 

RegWrite 

Add 
Add 

clk 

WBSrc MemWrite 

addr 

wdata 

rdata 
Data  
Memory 

we 

RegDst BSrc ExtSel OpCode 

z 
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wd rd2 

we 
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br 
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Register-Indirect Jump-&-Link (JALR) 

0x4 

RegWrite 
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Absolute Jumps (J, JAL) 
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RegWrite 
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Harvard-Style Datapath for MIPS 

0x4 

RegWrite 

Add 
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WBSrc MemWrite 
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Hardwired Control is pure 
Combinational Logic  

combinational  
logic 

op code 

zero? 

ExtSel 
BSrc 
OpSel 
MemWrite 
WBSrc 
RegDst 
RegWrite 
PCSrc 



January 26, 2010 CS152, Spring 2010 41 

ALU Control & Immediate Extension 

Inst<31:26> (Opcode)  

Decode Map 

Inst<5:0> (Func) 

ALUop 

0? 

+ 

OpSel 
( Func, Op, +, 0? ) 

ExtSel 
( sExt16, uExt16, 
  High16) 



January 26, 2010 CS152, Spring 2010 42 

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc 

ALU 
ALUi 
ALUiu 

LW 
SW 
BEQZz=0 

BEQZz=1 

J 
JAL 

JR 
JALR 

Hardwired Control Table 

BSrc = Reg / Imm  WBSrc = ALU / Mem / PC     
RegDst = rt / rd / R31  PCSrc = pc+4 / br / rind / jabs   

* * * no yes rind PC R31 
rind * * * no no * * 
jabs * * * no yes PC R31 

jabs * * * no no * * 
pc+4 sExt16 * 0? no no * * 

br sExt16 * 0? no no * * 
pc+4 sExt16 Imm + yes no * * 

pc+4 Imm Op no yes ALU rt 

pc+4 * Reg Func no yes ALU rd 
sExt16 Imm Op pc+4 no yes ALU rt 

pc+4 sExt16 Imm + no yes Mem rt 
uExt16 
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Single-Cycle Hardwired Control: 
Harvard architecture 

 We will assume  
•  clock period is sufficiently long for all of  
  the following steps to be “completed”: 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. data fetch if required 
5. register write-back setup time 

⇒       tC >  tIFetch + tRFetch + tALU+ tDMem+ tRWB 

•  At the rising edge of the following clock, the PC, 
   the register file and the memory are updated 
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An Ideal Pipeline  

•  All objects go through the same stages 

•  No sharing of resources between any two stages 

•  Propagation delay through all pipeline stages is equal 

•  The scheduling of an object entering the pipeline 
   is not affected by the objects in other stages 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

These conditions generally hold for industrial 
assembly lines.  
But can an instruction pipeline satisfy the last 
condition? 
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Summary 
•  Microcoding became less attractive as gap between 

RAM and ROM speeds reduced 
•  Complex instruction sets difficult to pipeline, so 

difficult to increase performance as gate count grew 
•  Iron Law explains architecture design space 

–  Trade instruction/program, cycles/instruction, and time/cycle 

•  Load-Store RISC ISAs designed for efficient 
pipelined implementations 

–  Very similar to vertical microcode 
–  Inspired by earlier Cray machines 

•  MIPS ISA will be used in class and problems, 
SPARC in lab (two very similar ISAs) 
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