CS 152 Computer Architecture and
Engineering

Lecture 3 - From CISC to RISC

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~csl1l52

January 26, 2010 CS152, Spring 2010

Last Time in Lecture 2

* |SA is the hardware/software interface
— Defines set of programmer visible state

— Defines instruction format (bit encoding) and instruction semantics
— Examples: MIPS, x86, IBM 360, JVM

« Many possible implementations of one ISA
— 360 implementations: model 30 (c. 1964), z10 (c. 2008)

— x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium,
Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, AMD
Athlon, Transmeta Crusoe, SoftPC

— MIPS implementations: R2000, R4000, R10000, R18K, ...
— JVM: HotSpot, PicoJava, ARM Jazelle, ...

January 26, 2010 CS152, Spring 2010 2

Last Time in Lecture 2

* When microcode appeared, different technologies for:
— Logic -> Vacuum Tubes
— Main Memory -> Magnetic cores
— Read-Only Memory -> Diode matrix, punched metal cards,+++

« Logic was expensive, and ROM much faster than RAM

* Microcoding was a straightforward methodical way to
Implement machines with low logic gate count

* Microcode made it easy to add complex instructions

January 26, 2010 CS152, Spring 2010 3

“lron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

— Instructions per program depends on source code, compiler
technology, and ISA

— Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

— Time per cycle depends upon the microarchitecture and the
base technology

January 26, 2010 CS152, Spring 2010 4

CPI for Microcoded Machine

(

(LI TTTTTTITITTTTTITTT]

January 26, 2010

[cycles 5 cycles 10 cycles
A A A
Inst1 ¥ Inst2 Y Inst 3

Timeg ——

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPl =22/3=7.33

CPl is always an average over a large
number of instructions

CS152, Spring 2010

When to add a new complex
instruction?

* Does it improve performance?
 How much does it cost?

January 26, 2010 CS152, Spring 2010

First Microprocessor
Intel 4004 1971

r'-'——;-q_ o,
r e £ oy

&

ndl G ' .' : s« 4-bit accumulator

ey e | architecture

4 : = 228 ¢ 8um pMOS
- L |« 2300 transistors
e 3 x4 mm?

. - ' —! » 750kHz clock

A\ S
1 ~
]
e

L\
: e
[

e _ _ ' “'+ 8-16 cycles/inst.
ST ; EEEa = ,l:l ! : = —d
e W Rl S0 [T RR0{ ©ililsl

.
':- e 5 ‘1 T4 i v kg - ——\"'7[
= i

Made possible by new integrated circuit technology
January 26, 2010 CS152, Spring 2010 7

Microprocessors in the Seventies

Initial target was embedded control

 First micro, 4-bit 4004 from Intel, designed for a desktop printing
calculator

Constrained by what could fit on single chip
 Single accumulator architectures similar to earliest computers
» Hardwired state machine control

8-bit micros (8085, 6800, 6502) used in hobbyist personal
computers

* Micral, Altair, TRS-80, Apple-ll
« Usually had 16-bit address space (up to 64KB directly addressable)

Often came with simple BASIC language interpreter built
into ROM or loaded from cassette tape.

January 26, 2010 CS152, Spring 2010 8

VisiCalc — the first
“Killer” app for micros

» Microprocessors had
little impact on
conventional computer
market until VisiCalc
spreadsheet for Apple-ll

» Apple-ll used Mostek
6502 microprocessor
running at 1MHz

Floppy disk drives were
originally invented by IBM as
a way of shipping IBM 360
microcode patches to
customers!

[Personal Computing Ad, 1979

January 26, 2010 CS15‘

Solve your

personal energy crisis.

Let VisiCalc"Power do the work.

With a calculator, pencil and paper you can spend hours plan-
ning, projecting, writing, estimating, calculating, revising, erasing
and recalculating as you work toward a decision.

Or with VisiCalc and your Apple* II you can explore many
more options with a fraction of the time and effort you’ve spent
before.

VisiCalc is a new breed of problem-solving software. Unlike
prepackaged software that forces you into a computerized
straight jacket, VisiCalc adapts itself to any numerical problem
you have. You enter numbers, alphabetic titles and formu-
las on your keyboard. VisiCalc organizes and displays this
information on the screen. You don’t have to spend your
time programming.

Your energy is better spent using the results than
getting them.

Say you're a business manager and want to project
your annual sales. Using the calculator, pencil and
paper method, you'd lay out 12 months across a
sheet and fill in lines and columns of figures
on products, outlets, salespeople, etc. You'd
calculate by hand the subtotals and summary
figures. Then you'd start revising, erasing
and recalculating. With VisiCalc, you simply
fill in the same figures on an electronic
“sheet of paper” and let the computer do
the work.

Once your first projection is complete,
< Jeady to use VisiCalc’s unique, &
alculation feature. It lets you
2 mmg new options and |
gs. “What if” sales
t type in the

dro 20

ﬁgt]zs affected by

CIRCLE 2

Or say you're an engineer working on a design problem and are
wondering “What if that oscillation were damped by another 10
percent?” Or you're working on your family’s expenses and
wonder “What will happen to our entertainment budget if the
heating bill goes up 15 percent this winter?”” VisiCalc responds
instantly to show you all the consequences of any change.

Once you see VisiCalc in action, you'll think of many more
uses for its power. Ask your dealer for a demonstration and dis-
cover how VisiCalc can help you in your professional work and
personal life.

You might find that VisiCalc alone is reason enough to
own a personal computer.

VisiCalc is available now for Apple Il computers, with
versions forother personal computers comingsoon.The Apple

11 version costs just $99.50 and requires a 32k disk system.

For the name and address of your nearest VisiCalc

dealer, call (408) 745-7841 or write to Personal

Software, Inc., Dept. P, 592 Weddell Dr.,

Sunnyvale, CA 94086. If your favorite

dealer doesn’t already carry Personal

Software products, ask him to
give us a call.

o/
P EwE

TM-VisiCalc is a trademark of
Personal Software, Inc.
*Apple is a registered trademark

of Apple Computer, Inc

DRAM in the Seventies

Dramatic progress in MOSFET memory
technology

1970, Intel introduces first DRAM, 1Kbit 1103

1979, Fujitsu introduces 64Kbit DRAM

=> By mid-Seventies, obvious that PCs would
soon have >64KBytes physical memory

January 26, 2010 CS152, Spring 2010 10

Microprocessor Evolution

Rapid progress in size and speed through 70s fueled by advances in
MOSFET technology and expanding markets

Intel 1432

— Most ambitious seventies’ micro; started in 1975 - released 1981
— 32-bit capability-based object-oriented architecture

— Instructions variable number of bits long

— Severe performance, complexity, and usability problems

Motorola 68000 (1979, 8MHz, 68,000 transistors)

— Heavily microcoded (and nanocoded)
— 32-bit general purpose register architecture (24 address pins)
— 8 address registers, 8 data registers

Intel 8086 (1978, 8MHz, 29,000 transistors)

— “Stopgap” 16-bit processor, architected in 10 weeks
— Extended accumulator architecture, assembly-compatible with 8080
— 20-bit addressing through segmented addressing scheme

January 26, 2010 CS152, Spring 2010 11

IBM PC, 1981

Hardware

Team from IBM building PC prototypes in 1979
Motorola 68000 chosen initially, but 68000 was late

IBM builds “stopgap” prototypes using 8088 boards from Display
Writer word processor

8088 is 8-bit bus version of 8086 => allows cheaper system
Estimated sales of 250,000
100,000,000s sold

Software

Microsoft negotiates to provide OS for IBM. Later buys and modifies
QDOS from Seattle Computer Products.

Open System

Standard processor, Intel 8088
Standard interfaces

Standard OS, MS-DOS
IBM permits cloning and third-party software

January 26, 2010 CS152, Spring 2010 12

January 26, 2010

IBM is proud to announce a product yo# may have a
personal interest in. It’s a tool that could soon be on your
desk, in your home or in your child’s schoolroom. It can
make a surprising difference in the way you work, learn
or otherwise approach the complexities (and some of the
simple pleasures) of living.

It’s the computer we’re making for you.

In the past 30 years, the computer has become
faster, smaller, less complicated and less expensive. And
IBM has contributed heavily to that evolution.

Today, we’ve applied what we know to a new
product we believe in: the IBM Personal Computer.

IBM PERSONAL COMPUTER SPECIFICATIONS
*ADVANCED FEATURES FOR PERSONAL COMPUTERS
User Memory lay Screen Color/anhlcs
16K - 256K bwes High-resolution
Permanent Memory (720h x 350v)*
(ROM) 40K bytes 80 characters x 25 lines
Microprocessor Upper and lower case symbols in RO\I
High speed, 8088* Green phosphor i,'mpbll ics molde
Auxiliary Memory screen™ -color resolution:
2 optional internal Diagnostics ‘ 320h x 200v*
diskette drives, Power-on self testing’ Black & white resoluu‘on:
5%, 160K bytes Parity checking 640h x 200V
per diskette L imul graphics &
Keyboard BASIC, Pascal text cnpablhu
83 keys, 6 ft. cord Printer Communications
attaches to Bidirectional* RS-232-C interface
system unit* 80 characters/second Asynchronous (start/stop)
10 funciion keys 12 character styles, up to protocol
10key numeric pad 132 characters/line* Up to 9600 bits
Tactile feedback 9x 9 character matrix™ per second

For the IBM Personal Computer dealer nearest you, call (800) 447-4700. In Illinois, (800) 322-4400.

It’s a computer that has reached a truly personal
scale in size and in price: starting at less than $1,600"for
a system that, with the addition of one simple device,
hooks up to your home TV and uses your audio cassette
recorder.

For flexibility, performance and ease of use, no other
personal computer offers as many advanced features to
please novice and expert alike (see the box).

Features like high resolution color graphics. Ten,
user-defined function keys. The kind of expandability
that lets you add a printer for word processing, or user
memory up to 256KB. Or BASIC and Pascal languages
that let you write your own programs. And a growing list
of superior programs like VisiCalc," selected by IBM to
match the quality and thoughtfulness of the system’s
total design.

This new system will be sold through channels
which meet our professional criteria: the nationwide
chain of 150 ComputerLand® stores, and Sears Business
Systems Centers. Of course, our own IBM Product
Centers will sell and service the system. And the IBM
Data Processing Division will serve those customers
who want to purchase in quantity.

Experience the IBM Personal Computer. You'll be
surprised how quickly you feel comfortable with it. And
impressed with what it can do for you ===

FThis price applies o [BM Produce Centers
y at ocher stores
VisiCalc isa rudcmuL of Personal Software, Inc

CIRCLE 3

[Personal Computing Ad, 11/81]

13

Analyzing Microcoded Machines
« John Cocke and group at IBM

— Working on a simple pipelined processor, 801, and advanced
compilers inside IBM

— Ported experimental PL.8 compiler to IBM 370, and only used
simple register-register and load/store instructions similar to 801

— Code ran faster than other existing compilers that used all 370

instructions! (up to 6MIPS whereas 2MIPS considered good
before)

« Emer, Clark, at DEC

— Measured VAX-11/780 using external hardware

— Found it was actually a 0.5MIPS machine, although usually
assumed to be a 1MIPS machine

— Found 20% of VAX instructions responsible for 60% of microcode,
but only account for 0.2% of execution

« VAX38800

— Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
— 4.5x more microstore RAM than cache RAM!

January 26, 2010 CS152, Spring 2010 14

IC Technology Changes Tradeoffs

* Logic, RAM, ROM all implemented using MOS
transistors

« Semiconductor RAM ~same speed as ROM

January 26, 2010 CS152, Spring 2010 15

Nan'?\\go/ ‘ ?G

Exploits recurring \)5 \State) ucode
control signal patterns e next-state
in ucode, e.g., . 30\\ _‘ ‘

. 25,
ALU, A < Reg[rs] - (\5 63
nanoac = .ss | GO —
ALUi, A < Reg[rs] 603
. N/~ s e 11 ROM

\
O T

v

« MC68000 had 17-bit ucode .ontaining either 10-bit uyjump or 9-bit
nanoinstruction pointer

— Nanoinstructions were 68 bits wide, decoded to give 196 control
signals

January 26, 2010 CS192, Spring 2010 16

From CISC to RISC

 Use fast RAM to build fast instruction cache of
user-visible instructions, not fixed hardware
microroutines

— Can change contents of fast instruction memory to fit what
application needs right now

« Use simple ISA to enable hardwired pipelined
implementation

— Most compiled code only used a few of the available CISC
instructions

— Simpler encoding allowed pipelined implementations

 Further benefit with integration

— In early ‘80s, could finally fit 32-bit datapath + small caches
on a single chip

— No chip crossings in common case allows faster operation

January 26, 2010 CS152, Spring 2010 17

Berkeley RISC Chips [&

RISC-l (1982) Contains 44,420 transistors,
fabbed in 5 ym NMOS, with a die area of
77 mm?, ran at 1 MHz. This chip is
probably the first VLSI RISC.

T arard it

Uy "8 8 5 8 4 4 A8 8

-

- RISCHI (1983) contains 40,760

2 transistors, was fabbed in 3 ym

- & NMOS, ran at 3 MHz, and the size
2 is 60 mm2.

?llllllllllllllﬂlllllIlllIllllllllmllllﬂﬂlllllllIg

B e mema e r et 8\ Stanford built some too...

P

January 26, 2010 CS152, Spring 2010 18

CS152 Administrivia

« PS1 available later today

« Lab 1 available before section on Thursday

— Scott Beamer standing in for Andrew in Section on Thursday
2-3:30pm, in 320 Soda

January 26, 2010 CS152, Spring 2010 19

“lron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

— Instructions per program depends on source code, compiler
technology, and ISA

— Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

— Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time

Microcoded >1 short
this Iect& Single-cycle unpipelined 1 long

Pipelined 1 short

January 26, 2010 CS152, Spring 2010 20

Hardware Elements

« Combinational circuits
OpSelect

— Mux, Decoder, ALU, ... - Add, Sub, ...
- And, Or, Xor, Not, ...
Sel \ET, LT, EQ, Zero, ...
lg(n)
A0—> Oo A—>

A, —> @) — Result
" IMux >ALU

>

(@]

=
Decoder

B — Comp?

—> On-1 /

n
—>
An-l

® Synchronous state elements
- Flipflop, Register, Register file, SRAM, DRAM

5) Clk
En::|> En ——/ .
ii
Clk D/ \
7
Q Q /

Edge-triggered: Data is sampled at the rising edge
January 26, 2010 CS152, Spring 2010

Register Files

register
DO D1 D2 e D -1
I G r
n
e e - B Lflf_
Q Q Q - Q
Clock WE
|
ReadSell ——rst W(_a rdl——> ReadDatal
ReadSel2 ——{rs2 Register .yl ReadData?
file
WriteSel ———|ws
WriteData =———wd 2R+1W

« Reads are combinational

January 26, 2010 CS152, Spring 2010 22

Register File Implementation

rsl
ws clk wd rdl rd2 5 rs2
5 324 32fY 32 5
—
> reg 0
— - |
we — reg 1
— . Pl I P
> reg 31 i—
v VVA VVA

» Register files with a large number of ports are difficult to design
— Almost all MIPS instructions have exactly 2 register source operands

— Intel’s Itanium, GPR File has 128 registers with 8 read ports and 4 write
ports!!!

January 26, 2010 CS152, Spring 2010 23

A Simple Memory Model

WriteEnable
Cllock l

N

Address ——
MAGIC |—— ReadData

RAM

WriteData ——

Reads and writes are always completed in one cycle
e a Read can be done any time (i.e. combinational)
e a Write is performed at the rising clock edge
if it is enabled
= the write address and data
must be stable at the clock edge

Later in the course we will present a more realistic
model of memory

January 26, 2010 CS152, Spring 2010 24

January 26, 2010

Implementing MIPS:

Single-cycle per instruction
datapath & control logic
(Should be review of CS61C)

CS152, Spring 2010

25

The MIPS ISA

Processor State
32 32-bit GPRs, RO always contains a O
32 single precision FPRs, may also be viewed as
16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types

8-bit byte, 16-bit half word
32-bit word for integers

32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set

data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big endian mode

All instructions are 32 bits
January 26, 2010 CS152, Spring 2010 26

Instruction Execution

Execution of an instruction involves

. instruction fetch

. decode and register fetch

. ALU operation

. memory operation (optional)
. write back

UG~ WNPRE

and the computation of the address of the
next instruction

January 26, 2010 CS152, Spring 2010

27

Datapath: Reg-Reg ALU Instructions

RegWrite
0x4 a l
clk
inst<25:21> "é we
inst<20:16> _|rs1
i R "Irs2
P2 linstatsats |7 v N
4 »{wd a2 L1 2
clk IMnst. GPRs
emory —_—
inst<5:0> | ALU
Caonirol
OpCode
RegWrite Timing?
S! 2 2 2 2 S!
0 rs rt | rd 0 func rd < (rs) func (rt)
January 26.2010°° 2> 2120 1®13%:518b spring™2010 28

Datapath: Reg-Imm ALU Instructions

RegWrite
0x4
clk l
a I
inst<25:21> vowe
» rs1
rs2
P »addr inst<20:16> rd1
inst »ws
A »wd rd2
clk Inst. GPRs
Memory
inst<15:0> Imm
"l Ext
inst<31:26> ‘ 0
Control
6 2 2 16
opcode| rs rt | immediate rt < (rs) op immediate
31 26 25 2120 16 15 _ 0
January 26, 2010 S152, Spring 2010 29

Conflicts in Merging Datapath

RegWrite

Ox4 Introduce
clk
» : | muxes
inst<25:21> v we
P s
rs2
P »addr inst<20:16> rd1
inst - »ws
A inst<15:11> olwd rd?
clk Inst. GPRs
Memory
inst<15:0> Imm
" Ext
inst<31:26> I ALU
inst<5:0> Control
6 2 2 2 2 6
0 rs rt | rd 0 func | rd < (rs) func (rt)
opcode| rs rt | immediate rt < (rs) op immediate

January 26, 2010

CS152, Spring 2010

30

Datapath for ALU Instructions

RegWrite
0x4
clk l
» .
<25:21> v we
<20:16> s
> > addr
P - L, T
A 11> slwd rd2
) Inst. <15:11> & s
Memory
<15:0> Imm
"l Ext
<31:26>_45:)> i N
Control
Op‘éode RegDst ExtSel OpSel BSrc
rt/rd Reg /Imm
6 2 2 2 2 6
0 rs rt | rd 0 func | rd < (rs) func (rt)
opcode] rs | rt | immediate rt < (rs) op immediate

January 26, 2010 CS152, Spring 2010 31

Datapath for Memory Instructions

Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory

- Note:
Somehow there must be a way to load the
program memory

Princeton style: the same (von Neumann’s influence)
- single read/write memory for program and data

- Note:
A Load or Store instruction requires
accessing the memory more than once
during its execution

January 26, 2010 CS152, Spring 2010 32

Load/Store Instructions:Harvard Datapath

RegWrite MemWrite
Ox4 a clk WBSrc
| ALU / Mem
‘ “hase” . rs1we clk
PIrs2 ‘|I
= »|addr ;:D—'ws rd1 — adc\j’\;e
|i Inst = - Mlwd rd2 — \
N Inst. GPRs > I:)atardata —_—
Memory disp Jd Imm Memory >
EX‘E » wdata
J ALU
control
A
v
OpCode RegDst ExtSel OpSel BSrc
6 5 5 16 addressing mode
opcode| rs rt | displacement (rs) + displacement
31 26 25 21 20 16 15 0

rs is the base register

rt is the destination of a Load or the source for a Store
January 26, 2010 CS152, Spring 2010 33

MIPS Control Instructions
Conditional (on GPR) PC-relative branch

6 5 5 16

opcode| rs | offset BEQZ, BNEZ
Uncon6d|t|ogal reglster |r1c6:5||rect jumps

opcode] I JR, JALR
Unconditional absolzute jumps

opc60de| targ6et J, JAL

e PC-relative branches add offsetx4 to PC+4 to calculate the
target address (offset is in words): +128 KB range

e Absolute jumps append targetx4 to PC<31:28> to calculate
the target address: 256 MB range

e jump-&-link stores PC+4 into the link register (R31)

e All Control Transfers are delayed by 1 instruction

we will worry about the branch delay slot later
January 26, 2010 CS152, Spring 2010 34

Conditional Branches (BEQZ, BNEZ)

PCSrc
l r RegWrite MemWrite WBSrc
c+4
0x4 7
Add .
Add
clk
| v
\'4
™ rs2 |_v
»lpq—|addr L) rd1 > Ve
inst|—s ws Lul—— 1| addr
q” »{wd rd2 v
clk Inst. GPRs 7 |2 rdata
Memory | Data
] Imm Memory
| Exi » wdata
»| ALU
Control
v | v
OpCode RegDst ExtSel OpSel BSrc zero?

January 26, 2010 CS152, Spring 2010 35

Register-Indirect Jumps (JR)

iPCSrc RegWrit MemWrit
v br egWrite emWrite
:ﬁnd
ct+4
~
0x4
Add >
}Add
clk
| v
V
P rs2 |
»lpt—>|addr R rd1 ¢ > Ve
inst ws wl—r— addr
q” »wd rd2
clk Inst. GPRs r O - rdata
Memory | Data
Imm Memory
F)::r » wdata
»| ALU
Control
| v
OpCode RegDst ExtSel OpSel BSrc zero?

January 26, 2010

WBSrc

CS152, Spring 2010

Register-Indirect Jump-&-Link (JALR)

lPCSrc RegWrit MemWrit
v br egWrite emWrite
Jind
c+4
~
0x4
Add >
Add
clk
] Vv
\"4
> rs1we clk
™ rs2 |
>lpgt—>|addr 31, rd1 ¢ > V-we
inst > ws Lul—r— addr
4 »lwd rd2 \
clk Inst. GPRs 2 | 2 rdata >
Memory | Data ;
| Imm Memory >
i Exd » wdata
»| ALU
Control
| v
OpCode RegDst ExtSel OpSel BSrc zero?
January 26, 2010 CS152, Spring 2010 37

WBSrc

Absolute Jumps (J, JAL)

lPCSrc . .
v br RegWrite MemWrite WBSrc
Jind
jabs
Add
clk
] Vv
V
> rs1we clk
P rs2 l |
>lP—2ddr 31,] rd1 > V—we
inst * > ws Lul—— addr
4 »{wd rd?2 4
clk Inst. GPRs 2 | 2 rdata
Memory | S Data
Imm Memory
F)j:‘ »| wdata
»| ALU
Control
v | v
OpCode RegDst ExtSel OpSel BSrc zero?

January 26, 2010

CS152, Spring 2010

38

Harvard-Style Datapath for MIPS

lPCSrc]]
v br RegWrite MemWrite WBSrc
Jind
jabs
Add
clk
] Vv
V
> rs1we clk
P rs2 |
= »|addr . rd1 > Vv we
inst ws wul—r— addr
»wd rd2 v
clk Inst. GPRs 1 |2 rdata
Memory | S Data
Imm Memory
F)j: »l wdata
»| ALU
Control
| v
OpCode RegDst ExtSel OpSel BSrc zero?
January 26, 2010 CS152, Spring 2010 39

Hardwired Control is pure

Combinational Logic

op code

Zero?

January 26, 2010

combinational
logic

CS152, Spring 2010

ExtSel
BSrc
OpSel
MemWrite
WBSrc
RegDst
RegWrite
PCSrc

40

ALU Control & Immediate Extension

Inst<5:0> (Func)

N

Inst<31:26> (Opcode)

0? ——

ALUop

Decode Map

January 26, 2010

CS152, Spring 2010

e

OpSel
(Func, Op, +, 07)

ExtSel
(sExt,g, UEXt,g,

High.e)
41

Hardwired Control Table

Opcode | ExtSel |BSrc | OpSel | MemW | RegW | WBSrc | RegDst PCSrc
ALU * Reg | Func | no yes | ALU rd pc+4
ALUi sExt,s | Imm| Op no yes | ALU rt pc+4
ALUiu uExt,s; | Imm| Op no yes | ALU rt pc+4
LW sExts| Imm + no yes Mem rt pc+4
SW sExt,g| Imm + yes no * * pc+4
BEQZ,, | sExt * 07? no no * * br
BEQZ,_, | sExt, * 0? no no * * pc+4
J * * * no no * * jabs
JAL]] * no yes | PC | R3f jabs
JR * * * no no * * rind
JALR * * * no yes PC R31 rind
BSrc = Reg / Imm WBSrc = ALU / Mem / PC

RegDst=rt/rd / R31 PCSrc = pc+4 / br/rind / jabs
January 26, 2010 CS152, Spring 2010 42

Single-Cycle Hardwired Control:

Harvard architecture

We will assume
e clock period is sufficiently long for all of
the following steps to be “completed”:

. instruction fetch

. decode and register fetch

. ALU operation

. data fetch if required

. register write-back setup time

P~ WNR

= c > Ureteh T trreten T taut tomem™ trws

e At the rising edge of the following clock, the PC,
the register file and the memory are updated

January 26, 2010 CS152, Spring 2010 43

An ldeal Pipeline

stage | stage | stage | stage
1] 2]]

e All objects go through the same stages
e No sharing of resources between any two stages
e Propagation delay through all pipeline stages is equal

e The scheduling of an object entering the pipeline
is not affected by the objects in other stages

These conditions generally hold for industrial
assembly lines.
But can an instruction pipeline satisfy the last

condition?
January 26, 2010 CS152, Spring 2010 44

Summary

Microcoding became less attractive as gap between
RAM and ROM speeds reduced

Complex instruction sets difficult to pipeline, so
difficult to increase performance as gate count grew

Iron Law explains architecture design space
— Trade instruction/program, cycles/instruction, and time/cycle

Load-Store RISC |SAs designed for efficient
pipelined implementations

— Very similar to vertical microcode
— Inspired by earlier Cray machines

MIPS ISA will be used in class and problems,
SPARC in lab (two very similar ISAs)

January 26, 2010 CS152, Spring 2010 45

Acknowledgements

* These slides contain material developed and
copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

« MIT material derived from course 6.823
 UCB material derived from course CS252

January 26, 2010 CS152, Spring 2010 46

