
January 26, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 3 - From CISC to RISC

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

January 26, 2010 CS152, Spring 2010

Last Time in Lecture 2

•  ISA is the hardware/software interface
– Defines set of programmer visible state
– Defines instruction format (bit encoding) and instruction semantics
–  Examples: MIPS, x86, IBM 360, JVM

•  Many possible implementations of one ISA
–  360 implementations: model 30 (c. 1964), z10 (c. 2008)
–  x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium,

Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, AMD
Athlon, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, R18K, …
–  JVM: HotSpot, PicoJava, ARM Jazelle, ...

2

January 26, 2010 CS152, Spring 2010 3

Last Time in Lecture 2
•  When microcode appeared, different technologies for:

–  Logic -> Vacuum Tubes
– Main Memory -> Magnetic cores
– Read-Only Memory -> Diode matrix, punched metal cards,+++

•  Logic was expensive, and ROM much faster than RAM
•  Microcoding was a straightforward methodical way to

implement machines with low logic gate count
•  Microcode made it easy to add complex instructions

January 26, 2010 CS152, Spring 2010

“Iron Law” of Processor Performance

4

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

–  Instructions per program depends on source code, compiler
technology, and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

January 26, 2010 CS152, Spring 2010

Inst 3

CPI for Microcoded Machine

5

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22

Total instructions = 3

CPI = 22/3 = 7.33

CPI is always an average over a large
number of instructions

Time

January 26, 2010 CS152, Spring 2010 6

When to add a new complex
instruction?
•  Does it improve performance?
•  How much does it cost?

January 26, 2010 CS152, Spring 2010

First Microprocessor
Intel 4004, 1971

•  4-bit accumulator
architecture

•  8µm pMOS
•  2,300 transistors
•  3 x 4 mm2
•  750kHz clock
•  8-16 cycles/inst.

7

Made possible by new integrated circuit technology

January 26, 2010 CS152, Spring 2010

Microprocessors in the Seventies
Initial target was embedded control
•  First micro, 4-bit 4004 from Intel, designed for a desktop printing

calculator

Constrained by what could fit on single chip
•  Single accumulator architectures similar to earliest computers
•  Hardwired state machine control

8-bit micros (8085, 6800, 6502) used in hobbyist personal
computers

•  Micral, Altair, TRS-80, Apple-II
•  Usually had 16-bit address space (up to 64KB directly addressable)

Often came with simple BASIC language interpreter built
into ROM or loaded from cassette tape.

8

January 26, 2010 CS152, Spring 2010

VisiCalc – the first
“killer” app for micros

•  Microprocessors had
little impact on
conventional computer
market until VisiCalc
spreadsheet for Apple-II
•  Apple-II used Mostek
6502 microprocessor
running at 1MHz

`

9
[Personal Computing Ad, 1979]

Floppy disk drives were
originally invented by IBM as
a way of shipping IBM 360
microcode patches to
customers!

January 26, 2010 CS152, Spring 2010

DRAM in the Seventies

Dramatic progress in MOSFET memory
technology

1970, Intel introduces first DRAM, 1Kbit 1103

1979, Fujitsu introduces 64Kbit DRAM

=> By mid-Seventies, obvious that PCs would
soon have >64KBytes physical memory

10

January 26, 2010 CS152, Spring 2010

Microprocessor Evolution
Rapid progress in size and speed through 70s fueled by advances in

MOSFET technology and expanding markets
Intel i432

–  Most ambitious seventies’ micro; started in 1975 - released 1981
–  32-bit capability-based object-oriented architecture
–  Instructions variable number of bits long
–  Severe performance, complexity, and usability problems

Motorola 68000 (1979, 8MHz, 68,000 transistors)
–  Heavily microcoded (and nanocoded)
–  32-bit general purpose register architecture (24 address pins)
–  8 address registers, 8 data registers

Intel 8086 (1978, 8MHz, 29,000 transistors)
–  “Stopgap” 16-bit processor, architected in 10 weeks
–  Extended accumulator architecture, assembly-compatible with 8080
–  20-bit addressing through segmented addressing scheme

11

January 26, 2010 CS152, Spring 2010

IBM PC, 1981
Hardware
•  Team from IBM building PC prototypes in 1979
•  Motorola 68000 chosen initially, but 68000 was late
•  IBM builds “stopgap” prototypes using 8088 boards from Display

Writer word processor
•  8088 is 8-bit bus version of 8086 => allows cheaper system
•  Estimated sales of 250,000
•  100,000,000s sold

Software
•  Microsoft negotiates to provide OS for IBM. Later buys and modifies

QDOS from Seattle Computer Products.

Open System
•  Standard processor, Intel 8088
•  Standard interfaces
•  Standard OS, MS-DOS
•  IBM permits cloning and third-party software

12

January 26, 2010 CS152, Spring 2010 13

[Personal Computing Ad, 11/81]

January 26, 2010 CS152, Spring 2010

Analyzing Microcoded Machines
•  John Cocke and group at IBM

–  Working on a simple pipelined processor, 801, and advanced
compilers inside IBM

–  Ported experimental PL.8 compiler to IBM 370, and only used
simple register-register and load/store instructions similar to 801

–  Code ran faster than other existing compilers that used all 370
instructions! (up to 6MIPS whereas 2MIPS considered good
before)

•  Emer, Clark, at DEC
–  Measured VAX-11/780 using external hardware
–  Found it was actually a 0.5MIPS machine, although usually

assumed to be a 1MIPS machine
–  Found 20% of VAX instructions responsible for 60% of microcode,

but only account for 0.2% of execution

•  VAX8800
–  Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM
–  4.5x more microstore RAM than cache RAM!

14

January 26, 2010 CS152, Spring 2010

IC Technology Changes Tradeoffs
•  Logic, RAM, ROM all implemented using MOS

transistors
•  Semiconductor RAM ~same speed as ROM

15

January 26, 2010 CS152, Spring 2010 16

Nanocoding

•  MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit
nanoinstruction pointer

– Nanoinstructions were 68 bits wide, decoded to give 196 control
signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

µPC (state)

nanoinstruction ROM
data

Exploits recurring
control signal patterns
in µcode, e.g.,

ALU0 A ← Reg[rs]
...
ALUi0 A ← Reg[rs]
...

January 26, 2010 CS152, Spring 2010 17

From CISC to RISC
•  Use fast RAM to build fast instruction cache of

user-visible instructions, not fixed hardware
microroutines

– Can change contents of fast instruction memory to fit what
application needs right now

•  Use simple ISA to enable hardwired pipelined
implementation

– Most compiled code only used a few of the available CISC
instructions

–  Simpler encoding allowed pipelined implementations

•  Further benefit with integration
–  In early ‘80s, could finally fit 32-bit datapath + small caches

on a single chip
– No chip crossings in common case allows faster operation

January 26, 2010 CS152, Spring 2010

Berkeley RISC Chips

18

RISC-I (1982) Contains 44,420 transistors,
fabbed in 5 µm NMOS, with a die area of
77 mm2, ran at 1 MHz. This chip is
probably the first VLSI RISC.

RISC-II (1983) contains 40,760
transistors, was fabbed in 3 µm
NMOS, ran at 3 MHz, and the size
is 60 mm2.

Stanford built some too…

January 26, 2010 CS152, Spring 2010 19

CS152 Administrivia
•  PS1 available later today
•  Lab 1 available before section on Thursday

–  Scott Beamer standing in for Andrew in Section on Thursday
2-3:30pm, in 320 Soda

January 26, 2010 CS152, Spring 2010 20

“Iron Law” of Processor Performance
 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

–  Instructions per program depends on source code, compiler
technology, and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

this lecture

January 26, 2010 CS152, Spring 2010

Hardware Elements

•  Combinational circuits
–  Mux, Decoder, ALU, ...

•  Synchronous state elements
–  Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge

Clk

D

Q

En ff

Q

D

Clk
En

OpSelect
 - Add, Sub, ...
 - And, Or, Xor, Not, ...
 - GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O
A0
A1

An-1

Mux . . .

lg(n)

A

D
ec

od
er

. . .

O0
O1

On-1

lg(n)

January 26, 2010 CS152, Spring 2010 22

Register Files

ReadData1 ReadSel1
ReadSel2

 WriteSel

Register
file

2R+1W

ReadData2

 WriteData

WE Clock

rd1 rs1

rs2

ws
wd

rd2

we

•  Reads are combinational

ff

Q0

D0

Clk
En

ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

January 26, 2010 CS152, Spring 2010 23

Register File Implementation

reg 31

ws clk

reg 1

wd

we

rs1
rd1 rd2

reg 0

…

32

…

5 32 32

…

rs2 5
5

•  Register files with a large number of ports are difficult to design
–  Almost all MIPS instructions have exactly 2 register source operands
–  Intel’s Itanium, GPR File has 128 registers with 8 read ports and 4 write

ports!!!

January 26, 2010 CS152, Spring 2010 24

A Simple Memory Model

MAGIC
 RAM

ReadData

WriteData

Address

WriteEnable
Clock

Reads and writes are always completed in one cycle
•  a Read can be done any time (i.e. combinational)
•  a Write is performed at the rising clock edge
 if it is enabled

 ⇒ the write address and data
 must be stable at the clock edge

Later in the course we will present a more realistic
model of memory

January 26, 2010 CS152, Spring 2010 25

Implementing MIPS:

Single-cycle per instruction
datapath & control logic

(Should be review of CS61C)

January 26, 2010 CS152, Spring 2010 26

The MIPS ISA
Processor State

32 32-bit GPRs, R0 always contains a 0
32 single precision FPRs, may also be viewed as

16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types
8-bit byte, 16-bit half word
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big endian mode

 All instructions are 32 bits

January 26, 2010 CS152, Spring 2010 27

Instruction Execution

Execution of an instruction involves

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back

and the computation of the address of the
next instruction

January 26, 2010 CS152, Spring 2010 28

Datapath: Reg-Reg ALU Instructions

RegWrite Timing?
 6 5 5 5 5 6
 0 rs rt rd 0 func rd ← (rs) func (rt)
31 26 25 21 20 16 15 11 5 0

0x4
Add

clk

addr
inst

Inst.
Memory

PC

inst<25:21>
inst<20:16>

inst<15:11>

inst<5:0>

OpCode

z
ALU

ALU
Control

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

January 26, 2010 CS152, Spring 2010 29

Datapath: Reg-Imm ALU Instructions

 6 5 5 16
opcode rs rt immediate rt ← (rs) op immediate

31 26 25 2120 16 15 0

Imm
Ext

ExtSel

inst<15:0>

OpCode

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we inst<25:21>

inst<20:16>

inst<31:26> ALU
Control

January 26, 2010 CS152, Spring 2010 30

Conflicts in Merging Datapath

Imm
Ext

ExtSel OpCode

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we inst<25:21>

inst<20:16>

inst<15:0>

inst<31:26> ALU
Control

inst<15:11>

inst<5:0>

opcode rs rt immediate rt ← (rs) op immediate

 6 5 5 5 5 6
 0 rs rt rd 0 func rd ← (rs) func (rt)

Introduce
muxes

January 26, 2010 CS152, Spring 2010 31

Datapath for ALU Instructions

<31:26>, <5:0>

opcode rs rt immediate rt ← (rs) op immediate

 6 5 5 5 5 6
 0 rs rt rd 0 func rd ← (rs) func (rt)

BSrc
Reg / Imm

RegDst
rt / rd

Imm
Ext

ExtSel OpCode

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we <25:21>
<20:16>

<15:0>

OpSel

ALU
Control

<15:11>

January 26, 2010 CS152, Spring 2010 32

Datapath for Memory Instructions
Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
-  read/write data memory

-  Note:
Somehow there must be a way to load the
program memory

Princeton style: the same (von Neumann’s influence)
-  single read/write memory for program and data

-  Note:
A Load or Store instruction requires
 accessing the memory more than once
 during its execution

January 26, 2010 CS152, Spring 2010 33

Load/Store Instructions:Harvard Datapath
WBSrc

ALU / Mem

rs is the base register
rt is the destination of a Load or the source for a Store

 6 5 5 16 addressing mode
opcode rs rt displacement (rs) + displacement

31 26 25 21 20 16 15 0

RegDst BSrc

“base”

disp

ExtSel OpCode OpSel

ALU
Control

z
ALU

0x4
Add

clk

addr
inst

Inst.
Memory

PC

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

clk

MemWrite

addr

wdata

rdata
Data
Memory

we

January 26, 2010 CS152, Spring 2010 34

MIPS Control Instructions
Conditional (on GPR) PC-relative branch

Unconditional register-indirect jumps

Unconditional absolute jumps

•  PC-relative branches add offset×4 to PC+4 to calculate the
target address (offset is in words): ±128 KB range

•  Absolute jumps append target×4 to PC<31:28> to calculate
the target address: 256 MB range

•  jump-&-link stores PC+4 into the link register (R31)
•  All Control Transfers are delayed by 1 instruction

we will worry about the branch delay slot later

 6 5 5 16
opcode rs offset BEQZ, BNEZ

 6 26
opcode target J, JAL

 6 5 5 16
opcode rs JR, JALR

January 26, 2010 CS152, Spring 2010 35

Conditional Branches (BEQZ, BNEZ)

0x4

Add

PCSrc

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

Add

br

pc+4

RegWrite

January 26, 2010 CS152, Spring 2010 36

Register-Indirect Jumps (JR)

0x4

RegWrite

Add
Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

PCSrc
br

pc+4

rind

January 26, 2010 CS152, Spring 2010 37

Register-Indirect Jump-&-Link (JALR)

0x4

RegWrite

Add
Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind

January 26, 2010 CS152, Spring 2010 38

Absolute Jumps (J, JAL)

0x4

RegWrite

Add
Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind
jabs

January 26, 2010 CS152, Spring 2010 39

Harvard-Style Datapath for MIPS

0x4

RegWrite

Add
Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br
rind
jabs
pc+4

January 26, 2010 CS152, Spring 2010 40

Hardwired Control is pure
Combinational Logic

combinational
logic

op code

zero?

ExtSel
BSrc
OpSel
MemWrite
WBSrc
RegDst
RegWrite
PCSrc

January 26, 2010 CS152, Spring 2010 41

ALU Control & Immediate Extension

Inst<31:26> (Opcode)

Decode Map

Inst<5:0> (Func)

ALUop

0?

+

OpSel
(Func, Op, +, 0?)

ExtSel
(sExt16, uExt16,
 High16)

January 26, 2010 CS152, Spring 2010 42

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU
ALUi
ALUiu

LW
SW
BEQZz=0

BEQZz=1

J
JAL

JR
JALR

Hardwired Control Table

BSrc = Reg / Imm WBSrc = ALU / Mem / PC
RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

* * * no yes rind PC R31
rind * * * no no * *
jabs * * * no yes PC R31

jabs * * * no no * *
pc+4 sExt16 * 0? no no * *

br sExt16 * 0? no no * *
pc+4 sExt16 Imm + yes no * *

pc+4 Imm Op no yes ALU rt

pc+4 * Reg Func no yes ALU rd
sExt16 Imm Op pc+4 no yes ALU rt

pc+4 sExt16 Imm + no yes Mem rt
uExt16

January 26, 2010 CS152, Spring 2010 43

Single-Cycle Hardwired Control:
Harvard architecture

 We will assume
•  clock period is sufficiently long for all of
 the following steps to be “completed”:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. data fetch if required
5. register write-back setup time

⇒ tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

•  At the rising edge of the following clock, the PC,
 the register file and the memory are updated

January 26, 2010 CS152, Spring 2010 44

An Ideal Pipeline

•  All objects go through the same stages

•  No sharing of resources between any two stages

•  Propagation delay through all pipeline stages is equal

•  The scheduling of an object entering the pipeline
 is not affected by the objects in other stages

stage
1

stage
2

stage
3

stage
4

These conditions generally hold for industrial
assembly lines.
But can an instruction pipeline satisfy the last
condition?

January 26, 2010 CS152, Spring 2010 45

Summary
•  Microcoding became less attractive as gap between

RAM and ROM speeds reduced
•  Complex instruction sets difficult to pipeline, so

difficult to increase performance as gate count grew
•  Iron Law explains architecture design space

–  Trade instruction/program, cycles/instruction, and time/cycle

•  Load-Store RISC ISAs designed for efficient
pipelined implementations

–  Very similar to vertical microcode
–  Inspired by earlier Cray machines

•  MIPS ISA will be used in class and problems,
SPARC in lab (two very similar ISAs)

January 26, 2010 CS152, Spring 2010 46

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

