
January 28, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 4 - Pipelining

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

January 28, 2010 CS152, Spring 2010 2

Last time in Lecture 3
•  Microcoding became less attractive as gap between

RAM and ROM speeds reduced
•  Complex instruction sets difficult to pipeline, so

difficult to increase performance as gate count grew
•  Iron-law explains architecture design space

–  Trade instructions/program, cycles/instruction, and time/cycle

•  Load-Store RISC ISAs designed for efficient
pipelined implementations

–  Very similar to vertical microcode
–  Inspired by earlier Cray machines (more on these later)

January 28, 2010 CS152, Spring 2010 3

An Ideal Pipeline

•  All objects go through the same stages

•  No sharing of resources between any two stages

•  Propagation delay through all pipeline stages is equal

•  The scheduling of an object entering the pipeline
 is not affected by the objects in other stages

stage
1

stage
2

stage
3

stage
4

These conditions generally hold for industrial
assembly lines, but instructions depend on each
other!

January 28, 2010 CS152, Spring 2010 4

Pipelined MIPS
To pipeline MIPS:

•  First build MIPS without pipelining with
CPI=1

• Next, add pipeline registers to reduce
cycle time while maintaining CPI=1

January 28, 2010 CS152, Spring 2010 5

Lecture 3: Unpipelined Datapath for MIPS

0x4

RegWrite

Add
Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br
rind
jabs
pc+4

January 28, 2010 CS152, Spring 2010 6

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU
ALUi
ALUiu

LW
SW
BEQZz=0

BEQZz=1

J
JAL

JR
JALR

Lecture 3: Hardwired Control Table

BSrc = Reg / Imm WBSrc = ALU / Mem / PC
RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

* * * no yes rind PC R31
rind * * * no no * *
jabs * * * no yes PC R31

jabs * * * no no * *
pc+4 sExt16 * 0? no no * *

br sExt16 * 0? no no * *
pc+4 sExt16 Imm + yes no * *

pc+4 Imm Op no yes ALU rt

pc+4 * Reg Func no yes ALU rd
sExt16 Imm Op pc+4 no yes ALU rt

pc+4 sExt16 Imm + no yes Mem rt
uExt16

January 28, 2010 CS152, Spring 2010 7

Pipelined Datapath

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

 tC > max {tIM, tRF, tALU, tDM, tRW} (= tDM probably)

However, CPI will increase unless instructions are pipelined

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR
PC

January 28, 2010 CS152, Spring 2010 8

“Iron Law” of Processor Performance
 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

– Instructions per program depends on source code,
compiler technology, and ISA

– Cycles per instructions (CPI) depends upon the
ISA and the microarchitecture

– Time per cycle depends upon the
microarchitecture and the base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

Lecture 2
Lecture 3
Lecture 4

January 28, 2010 CS152, Spring 2010

CPI Examples

9

Time

Inst 3

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles
Microcoded machine

3 instructions, 22 cycles, CPI=7.33
Unpipelined machine

3 instructions, 3 cycles, CPI=1

Inst 1 Inst 2 Inst 3

Pipelined machine

3 instructions, 3 cycles, CPI=1
Inst 1

Inst 2
Inst 3

January 28, 2010 CS152, Spring 2010 10

Technology Assumptions

Thus, the following timing assumption is reasonable

•  A small amount of very fast memory (caches)
 backed up by a large, slower memory

•  Fast ALU (at least for integers)

•  Multiported Register files (slower!)

tIM ≈ tRF ≈ tALU ≈ tDM ≈ tRW

A 5-stage pipeline will be the focus of our
detailed design

 - some commercial designs have over 30
pipeline stages to do an integer add!

January 28, 2010 CS152, Spring 2010 11

5-Stage Pipelined Execution

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2 IF2 ID2 EX2 MA2 WB2
instruction3 IF3 ID3 EX3 MA3 WB3
instruction4 IF4 ID4 EX4 MA4 WB4
instruction5 IF5 ID5 EX5 MA5 WB5

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR PC

January 28, 2010 CS152, Spring 2010 12

5-Stage Pipelined Execution
Resource Usage Diagram

time t0 t1 t2 t3 t4 t5 t6 t7
IF I1 I2 I3 I4 I5
ID I1 I2 I3 I4 I5
EX I1 I2 I3 I4 I5
MA I1 I2 I3 I4 I5
WB I1 I2 I3 I4 I5

R
es

ou
rc

es

Write
-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IR PC

January 28, 2010 CS152, Spring 2010 13

Pipelined Execution:
ALU Instructions

IR IR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

Not quite correct!

We need an Instruction Reg (IR) for each stage

January 28, 2010 CS152, Spring 2010 14

Pipelined MIPS Datapath
without jumps

IR IR IR

31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

Data
Memory

wdata

addr

wdata

rdata

we

OpSel

ExtSel BSrc

WBSrc MemWrite

RegDst
RegWrite

F D E M W

Control Points Need to
Be Connected

January 28, 2010 CS152, Spring 2010 15

Instructions interact with each other
in pipeline

•  An instruction in the pipeline may need a
resource being used by another instruction
in the pipeline  structural hazard

•  An instruction may depend on something
produced by an earlier instruction
– Dependence may be for a data value

  data hazard
– Dependence may be for the next instruction’s

address
  control hazard (branches, exceptions)

January 28, 2010 CS152, Spring 2010

Resolving Structural Hazards

•  Structural hazards occurs when two
instruction need same hardware resource at
same time

– Can resolve in hardware by stalling newer instruction till
older instruction finished with resource

•  A structural hazard can always be avoided by
adding more hardware to design

–  E.g., if two instructions both need a port to memory at same
time, could avoid hazard by adding second port to memory

•  Our 5-stage pipe has no structural hazards by
design

–  Thanks to MIPS ISA, which was designed for pipelining

16

January 28, 2010 CS152, Spring 2010 17

Data Hazards

...
r1 ← r0 + 10
r4 ← r1 + 17
...

r1 is stale. Oops!

r1 ← … r4 ← r1 …

IR IR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

January 28, 2010 CS152, Spring 2010 18

CS152 Administrivia
•  PS 1 out Tuesday
•  Lab 1 out today
•  Scott Beamer will run section reviewing lab 1 at 2pm

in 320 Soda

January 28, 2010 CS152, Spring 2010 19

Resolving Data Hazards (1)

Strategy 1:

Wait for the result to be available by freezing
earlier pipeline stages  interlocks

January 28, 2010 CS152, Spring 2010 20

Feedback to Resolve Hazards

•  Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

FB1

stage
1

stage
2

stage
3

stage
4

FB2 FB3 FB4

•  Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without
any interference from instructions in stages 1 to i
 (otherwise deadlocks may occur)

January 28, 2010 CS152, Spring 2010 21

IR IR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Interlocks to resolve Data Hazards

...
r1 ← r0 + 10
r4 ← r1 + 17
...

Stall Condition

January 28, 2010 CS152, Spring 2010 22

stalled stages

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I3 I3 I3 I4 I5
ID I1 I2 I2 I2 I2 I3 I4 I5
EX I1 nop nop nop I2 I3 I4 I5
MA I1 nop nop nop I2 I3 I4 I5
WB I1 nop nop nop I2 I3 I4 I5

Stalled Stages and Pipeline Bubbles

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) r1 ← (r0) + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← (r1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3
(I4) IF4 ID4 EX4 MA4 WB4
(I5) IF5 ID5 EX5 MA5 WB5

Resource
Usage

nop ⇒ pipeline bubble

January 28, 2010 CS152, Spring 2010 23

IR IR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Interlock Control Logic

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted
instructions.

stall
Cstall

ws

rs
rt ?

January 28, 2010 CS152, Spring 2010 24

Cdest

Interlock Control Logic
ignoring jumps & branches

Should we always stall if the rs field matches some rd?

IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall
Cstall

ws

rs
rt ?

we

re1 re2

Cre

ws we ws
Cdest Cdest

we

 not every instruction writes a register ⇒ we
 not every instruction reads a register ⇒ re

January 28, 2010 CS152, Spring 2010 25

Source & Destination Registers

 source(s) destination
ALU rd ← (rs) func (rt) rs, rt rd
ALUi rt ← (rs) op imm rs rt
LW rt ← M [(rs) + imm] rs rt
SW M [(rs) + imm] ← (rt) rs, rt
BZ cond (rs)

 true: PC ← (PC) + imm rs
 false: PC ← (PC) + 4 rs

J PC ← (PC) + imm
JAL r31 ← (PC), PC ← (PC) + imm 31
JR PC ← (rs) rs
JALR r31 ← (PC), PC ← (rs) rs 31

R-type: op rs rt rd func

I-type: op rs rt immediate16

J-type: op immediate26

January 28, 2010 CS152, Spring 2010 26

Deriving the Stall Signal
Cdest

ws = Case opcode
ALU ⇒ rd
ALUi, LW ⇒ rt
JAL, JALR ⇒ R31

we = Case opcode
ALU, ALUi, LW ⇒(ws ≠ 0)
 JAL, JALR ⇒ on
... ⇒ off

Cre
re1 = Case opcode

ALU, ALUi,

 ⇒ on
 ⇒ off

re2 = Case opcode
 ⇒ on
 ⇒ off

LW, SW, BZ,
JR, JALR
J, JAL

ALU, SW
...

Cstall
 stall = ((rsD =wsE).weE +
 (rsD =wsM).weM +
 (rsD =wsW).weW) . re1D +
 ((rtD =wsE).weE +
 (rtD =wsM).weM +
 (rtD =wsW).weW) . re2D

January 28, 2010 CS152, Spring 2010 27

Hazards due to Loads & Stores

...
M[(r1)+7] ← (r2)
r4 ← M[(r3)+5]
...

IR IR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Stall Condition

Is there any possible data hazard
in this instruction sequence?

What if
(r1)+7 = (r3)+5 ?

January 28, 2010 CS152, Spring 2010 28

Load & Store Hazards

However, the hazard is avoided because our
memory system completes writes in one cycle !

Load/Store hazards are sometimes resolved in the
pipeline and sometimes in the memory system
itself.

More on this later in the course.

...
M[(r1)+7] ← (r2)
r4 ← M[(r3)+5]
...

(r1)+7 = (r3)+5 ⇒ data hazard

January 28, 2010 CS152, Spring 2010 29

Resolving Data Hazards (2)

Strategy 2:

Route data as soon as possible after it is
calculated to the earlier pipeline stage  bypass

January 28, 2010 CS152, Spring 2010 30

Bypassing

Each stall or kill introduces a bubble in the pipeline
 	

 	

⇒ CPI > 1

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 ← r0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← r1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3
(I4) stalled stages IF4 ID4 EX4
(I5) IF5 ID5

 time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 ← r0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) r4 ← r1 + 17 IF2 ID2 EX2 MA2 WB2
(I3) IF3 ID3 EX3 MA3 WB3
(I4) IF4 ID4 EX4 MA4 WB4
(I5) IF5 ID5 EX5 MA5 WB5

A new datapath, i.e., a bypass, can get the data from
the output of the ALU to its input

January 28, 2010 CS152, Spring 2010 31

Adding a Bypass

ASrc

 ...
(I1) r1 ← r0 + 10
(I2) r4 ← r1 + 17

r4 ← r1... 	

 r1 ←... 	

IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

When does this bypass help?

r1 ← M[r0 + 10]
r4 ← r1 + 17

JAL 500
r4 ← r31 + 17

yes no no

January 28, 2010 CS152, Spring 2010 32

The Bypass Signal
Deriving it from the Stall Signal

ASrc = (rsD=wsE).weE.re1D

we = Case opcode
ALU, ALUi, LW ⇒(ws ≠ 0)

 JAL, JALR ⇒ on
... ⇒ off

No because only ALU and ALUi instructions can benefit
from this bypass

Is this correct?

Split weE into two components: we-bypass, we-stall

stall = (((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D

 +((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D)

ws = Case opcode
ALU ⇒ rd
ALUi, LW ⇒ rt
JAL, JALR ⇒ R31

January 28, 2010 CS152, Spring 2010 33

Bypass and Stall Signals

we-bypassE = Case opcodeE
ALU, ALUi ⇒ (ws ≠ 0)

 ... ⇒ off

ASrc = (rsD =wsE).we-bypassE . re1D

Split weE into two components: we-bypass, we-stall

stall = ((rsD =wsE).we-stallE +

 (rsD=wsM).weM + (rsD=wsW).weW). re1D

 +((rtD = wsE).weE + (rtD = wsM).weM + (rtD = wsW).weW). re2D

we-stallE = Case opcodeE
LW ⇒ (ws ≠ 0)

 JAL, JALR ⇒ on
... ⇒ off

January 28, 2010 CS152, Spring 2010 34

Fully Bypassed Datapath

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Is there still
a need for the
stall signal ? stall = (rsD=wsE). (opcodeE=LWE).(wsE≠0).re1D

 + (rtD=wsE). (opcodeE=LWE).(wsE≠0).re2D

January 28, 2010 CS152, Spring 2010 35

Resolving Data Hazards (3)

Strategy 3:

Speculate on the dependence. Two cases:

 Guessed correctly  do nothing

 Guessed incorrectly  kill and restart

…. We’ll later see examples of this approach in
more complex processors.

January 28, 2010 CS152, Spring 2010 36

Next Time: Control Hazards
•  Branches/Jumps
•  Exceptions/Interrupts

January 28, 2010 CS152, Spring 2010 37

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

