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Last time in Lecture 3 
•  Microcoding became less attractive as gap between 

RAM and ROM speeds reduced 
•  Complex instruction sets difficult to pipeline, so 

difficult to increase performance as gate count grew 
•  Iron-law explains architecture design space 

–  Trade instructions/program, cycles/instruction, and time/cycle 

•  Load-Store RISC ISAs designed for efficient 
pipelined implementations 

–  Very similar to vertical microcode 
–  Inspired by earlier Cray machines (more on these later) 
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An Ideal Pipeline  

•  All objects go through the same stages 

•  No sharing of resources between any two stages 

•  Propagation delay through all pipeline stages is equal 

•  The scheduling of an object entering the pipeline 
   is not affected by the objects in other stages 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

These conditions generally hold for industrial 
assembly lines, but instructions depend on each 
other! 
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Pipelined MIPS 
To pipeline MIPS: 

•  First build MIPS without pipelining with 
CPI=1  

• Next, add pipeline registers to reduce 
cycle time while maintaining CPI=1 
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Lecture 3: Unpipelined Datapath for MIPS 
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Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc 

ALU 
ALUi 
ALUiu 

LW 
SW 
BEQZz=0 

BEQZz=1 

J 
JAL 

JR 
JALR 

Lecture 3: Hardwired Control Table 

BSrc = Reg / Imm  WBSrc = ALU / Mem / PC     
RegDst = rt / rd / R31  PCSrc = pc+4 / br / rind / jabs   

* * * no yes rind PC R31 
rind * * * no no * * 
jabs * * * no yes PC R31 

jabs * * * no no * * 
pc+4 sExt16 * 0? no no * * 

br sExt16 * 0? no no * * 
pc+4 sExt16 Imm + yes no * * 

pc+4 Imm Op no yes ALU rt 

pc+4 * Reg Func no yes ALU rd 
sExt16 Imm Op pc+4 no yes ALU rt 

pc+4 sExt16 Imm + no yes Mem rt 
uExt16 
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Pipelined Datapath 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  

However, CPI will increase unless instructions are pipelined 
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“Iron Law” of Processor Performance 
      Time     =   Instructions         Cycles            Time 
   Program           Program    *   Instruction   *   Cycle 

– Instructions per program depends on source code, 
compiler technology, and ISA 

– Cycles per instructions (CPI) depends upon the 
ISA and the microarchitecture 

– Time per cycle depends upon the 
microarchitecture and the base technology 

Microarchitecture CPI cycle time 
Microcoded >1 short 
Single-cycle unpipelined 1 long 
Pipelined 1 short 

Lecture 2 
Lecture 3 
Lecture 4 
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CPI Examples 

9 

Time 

Inst 3 

7 cycles 

Inst 1 Inst 2 

5 cycles 10 cycles 
Microcoded machine 

3 instructions, 22 cycles, CPI=7.33 
Unpipelined machine 

3 instructions, 3 cycles, CPI=1 

Inst 1 Inst 2 Inst 3 

Pipelined machine 

3 instructions, 3 cycles, CPI=1 
Inst 1 

Inst 2 
Inst 3 
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Technology Assumptions 

Thus, the following timing assumption is reasonable 

•  A small amount of very fast memory (caches) 
   backed up by a large, slower memory  

•  Fast ALU (at least for integers)  

•  Multiported Register files (slower!) 

tIM ≈ tRF ≈ tALU ≈ tDM ≈ tRW 

A 5-stage pipeline will be the focus of our 
detailed design 

 - some commercial designs have over 30 
pipeline stages to do an integer add! 
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5-Stage Pipelined Execution 

time   t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
instruction1  IF1  ID1  EX1  MA1  WB1 
instruction2   IF2  ID2  EX2  MA2  WB2 
instruction3    IF3  ID3  EX3  MA3  WB3 
instruction4     IF4  ID4  EX4  MA4  WB4 
instruction5      IF5  ID5  EX5  MA5  WB5 
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5-Stage Pipelined Execution 
Resource Usage Diagram 

time  t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
IF   I1  I2  I3  I4  I5   
ID    I1  I2  I3  I4  I5 
EX             I1  I2  I3  I4  I5 
MA          I1  I2  I3  I4  I5 
WB          I1  I2  I3  I4  I5 
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Pipelined Execution: 
ALU Instructions 
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Not quite correct! 

We need an Instruction Reg (IR) for each stage 
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Pipelined MIPS Datapath 
without jumps 

IR IR IR 

31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 
Add 

IR 

Imm 
Ext 

ALU 
rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

Data  
Memory 

wdata 

addr 

wdata 

rdata 

we 

OpSel 

ExtSel BSrc 

WBSrc MemWrite 

RegDst 
RegWrite 

F D E M W 

Control Points Need to 
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Instructions interact with each other 
in pipeline 

•  An instruction in the pipeline may need a 
resource being used by another instruction 
in the pipeline  structural  hazard 

•  An instruction may depend on something 
produced by an earlier instruction 
– Dependence may be for a data value  

  data hazard 
– Dependence may be for the next instruction’s 

address 
  control hazard (branches, exceptions) 
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Resolving Structural Hazards 

•  Structural hazards occurs when two 
instruction need same hardware resource at 
same time 

– Can resolve in hardware by stalling newer instruction till 
older instruction finished with resource 

•  A structural hazard can always be avoided by 
adding more hardware to design 

–  E.g., if two instructions both need a port to memory at same 
time, could avoid hazard by adding second port to memory 

•  Our 5-stage pipe has no structural hazards by 
design 

–  Thanks to MIPS ISA, which was designed for pipelining 

16 
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Data Hazards 

... 
r1 ← r0 + 10 
r4 ← r1 + 17 
... 

r1 is stale. Oops! 

r1 ← … r4 ←  r1 … 
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CS152 Administrivia 
•  PS 1 out Tuesday 
•  Lab 1 out today 
•  Scott Beamer will run section reviewing lab 1 at 2pm 

in 320 Soda 
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Resolving Data Hazards (1) 

Strategy 1: 

Wait for the result to be available by freezing 
earlier pipeline stages  interlocks 



January 28, 2010 CS152, Spring 2010 20 

Feedback to Resolve Hazards 

•  Later stages provide dependence information to 
earlier stages which can stall (or kill) instructions  

FB1 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

FB2 FB3 FB4 

•  Controlling a pipeline in this manner works provided 
the instruction at stage i+1 can complete without 
any interference from instructions in stages 1 to i 
    (otherwise deadlocks may occur) 
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IR IR IR 
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Interlocks to resolve Data Hazards 

... 
r1 ← r0 + 10 
r4 ← r1 + 17 
... 

Stall Condition 
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stalled stages 

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I3  I3  I3  I4  I5   
ID   I1  I2  I2  I2  I2  I3  I4  I5 
EX          I1  nop  nop  nop  I2  I3  I4  I5 
MA         I1  nop  nop  nop  I2  I3  I4  I5 
WB         I1  nop  nop  nop  I2  I3  I4  I5 

Stalled Stages and Pipeline Bubbles 

 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) r1 ← (r0) + 10 IF1  ID1  EX1  MA1  WB1 
(I2) r4 ← (r1) + 17  IF2  ID2  ID2  ID2  ID2  EX2  MA2  WB2 
(I3)       IF3  IF3  IF3  IF3  ID3  EX3  MA3  WB3 
(I4)                            IF4  ID4  EX4  MA4  WB4 
(I5)                               IF5  ID5  EX5  MA5  WB5 

Resource  
Usage 

nop  ⇒     pipeline bubble 
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IR IR IR 
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Interlock Control Logic 

Compare the source registers of the instruction in the decode 
stage with the destination register of the uncommitted 
instructions. 
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Cdest 

Interlock Control Logic 
ignoring jumps & branches 

Should we always stall if the rs field matches some rd? 
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 not every instruction writes a register ⇒ we  
 not every instruction reads a register  ⇒ re 
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Source & Destination Registers 

            source(s)   destination 
ALU  rd ←  (rs) func (rt)             rs, rt   rd 
ALUi  rt ←  (rs) op imm    rs             rt 
LW  rt ← M [(rs) + imm]    rs             rt 
SW  M [(rs) + imm] ←  (rt)            rs, rt 
BZ  cond (rs) 

  true:  PC ←  (PC) + imm   rs 
  false:  PC ←  (PC) + 4   rs 

J  PC ←  (PC) + imm 
JAL  r31 ←  (PC), PC ←  (PC) + imm    31   
JR  PC ←  (rs)      rs 
JALR  r31 ←  (PC), PC ←  (rs)    rs   31 

R-type:     op   rs       rt      rd              func 

I-type:     op   rs       rt       immediate16   
   

J-type:     op            immediate26  
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Deriving the Stall Signal 
Cdest 

ws = Case opcode 
ALU   ⇒ rd 
ALUi, LW  ⇒ rt 
JAL, JALR  ⇒ R31 

we = Case opcode 
ALU, ALUi, LW ⇒(ws ≠ 0)  
 JAL, JALR  ⇒ on 
...   ⇒ off 

Cre 
re1 = Case opcode 

ALU, ALUi,   
   
  ⇒ on 
  ⇒ off 

re2 = Case opcode 
  ⇒ on 
  ⇒ off 

LW, SW, BZ,  
JR, JALR 
J, JAL 

ALU, SW 
... 

Cstall 
 stall = ((rsD =wsE).weE +  
   (rsD =wsM).weM +  
   (rsD =wsW).weW) . re1D    + 
  ((rtD =wsE).weE +  
   (rtD =wsM).weM +  
   (rtD =wsW).weW) . re2D 



January 28, 2010 CS152, Spring 2010 27 

Hazards due to Loads & Stores 

... 
M[(r1)+7] ← (r2)  
r4 ← M[(r3)+5] 
... 
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Stall Condition 

Is there any possible data hazard 
in this instruction sequence? 

What if 
(r1)+7 = (r3)+5 ? 
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Load & Store Hazards 

However, the hazard is avoided because our 
memory system completes writes in one cycle ! 

Load/Store hazards are sometimes resolved in the 
pipeline and sometimes in the memory system 
itself. 

More on this later in the course. 

... 
M[(r1)+7] ← (r2)  
r4 ← M[(r3)+5] 
... 

(r1)+7 = (r3)+5  ⇒ data hazard 
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Resolving Data Hazards (2) 

Strategy 2: 

Route data as soon as possible after it is 
calculated to the earlier pipeline stage  bypass 
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Bypassing 

Each stall or kill introduces a bubble in the pipeline 
 	

 	

⇒ CPI  >  1  

time    t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
(I1) r1 ← r0 + 10   IF1  ID1  EX1  MA1  WB1 
(I2) r4 ← r1 + 17    IF2  ID2  ID2  ID2  ID2  EX2  MA2  WB2 
(I3)        IF3  IF3  IF3  IF3  ID3  EX3  MA3   
(I4)                       stalled stages   IF4  ID4  EX4   
(I5)                                IF5  ID5   

 time   t0  t1  t2  t3  t4  t5  t6  t7  . . . . 
(I1) r1 ← r0 + 10   IF1  ID1  EX1  MA1  WB1 
(I2) r4 ← r1 + 17    IF2  ID2  EX2  MA2  WB2 
(I3)        IF3  ID3  EX3  MA3  WB3 
(I4)                        IF4  ID4  EX4  MA4  WB4 
(I5)                             IF5  ID5  EX5  MA5  WB5 

A new datapath, i.e., a bypass, can get the data from  
the output of the ALU to its input 
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Adding a Bypass 

ASrc 

 ... 
(I1)  r1 ← r0 + 10 
(I2)  r4 ← r1 + 17 

r4 ← r1... 	

 r1 ←... 	
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When does this bypass help? 

r1 ← M[r0 + 10] 
r4 ← r1 + 17 

JAL  500 
r4 ← r31 + 17 

yes no no 
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The Bypass Signal 
Deriving it from the Stall Signal 

ASrc = (rsD=wsE).weE.re1D 

we = Case opcode 
ALU, ALUi, LW ⇒(ws ≠ 0)  

      JAL, JALR       ⇒ on 
...       ⇒ off 

No because only ALU and ALUi instructions can benefit 
from this bypass 

Is this correct? 

Split weE into two components: we-bypass, we-stall 

stall = ( ((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D   

           +((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D )  

ws = Case opcode 
ALU  ⇒ rd 
ALUi, LW  ⇒ rt 
JAL, JALR  ⇒ R31 
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Bypass and Stall Signals 

we-bypassE = Case opcodeE 
ALU, ALUi  ⇒ (ws ≠ 0)  

      ...   ⇒ off 

ASrc  = (rsD =wsE).we-bypassE . re1D 

Split weE into two components: we-bypass, we-stall 

stall     =  ((rsD =wsE).we-stallE +  

   (rsD=wsM).weM + (rsD=wsW).weW). re1D 

              +((rtD = wsE).weE + (rtD = wsM).weM + (rtD = wsW).weW). re2D                   

we-stallE = Case opcodeE 
LW   ⇒ (ws ≠ 0)  

      JAL, JALR  ⇒ on 
...   ⇒ off 
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Fully Bypassed Datapath 

ASrc 
IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 
Add 

IR ALU 

Imm 
Ext 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 

PC for JAL, ... 

BSrc 

Is there still 
a need for the 
stall signal ? stall =   (rsD=wsE). (opcodeE=LWE).(wsE≠0 ).re1D 

         + (rtD=wsE). (opcodeE=LWE).(wsE≠0 ).re2D 
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Resolving Data Hazards (3) 

Strategy 3: 

Speculate on the dependence. Two cases: 

 Guessed correctly  do nothing 

 Guessed incorrectly  kill and restart 

…. We’ll later see examples of this approach in 
more complex processors. 
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Next Time: Control Hazards 
•  Branches/Jumps 
•  Exceptions/Interrupts 
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