
February 2, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 5 - Pipelining II

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 2, 2010 CS152, Spring 2010 2

Last time in Lecture 4
•  Pipelining increases clock frequency, while growing CPI more

slowly, hence giving greater performance

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

Reduces because fewer logic gates
on critical paths between flip-flops

Increases because of
pipeline bubbles

•  Pipelining of instructions is complicated by HAZARDS:
–  Structural hazards (two instructions want same hardware resource)
–  Data hazards (earlier instruction produces value needed by later

instruction)
–  Control hazards (instruction changes control flow, e.g., branches or

exceptions)

•  Techniques to handle hazards:
–  Interlock (hold newer instruction until older instructions drain out of

pipeline and write back results)
–  Bypass (transfer value from older instruction to newer instruction as

soon as available somewhere in machine)
–  Speculate (guess effect of earlier instruction)

February 2, 2010 CS152, Spring 2010 3

Control Hazards

• What do we need to calculate next PC?

– For Jumps
»  Opcode, offset and PC

– For Jump Register
» Opcode and Register value

– For Conditional Branches
» Opcode, PC, Register (for condition), and offset

– For all other instructions
» Opcode and PC

•  have to know it’s not one of above

February 2, 2010 CS152, Spring 2010 4

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) r1 ← (r0) + 10 IF1 ID1 EX1 MA1 WB1
(I2) r3 ← (r2) + 17 IF2 IF2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 ID3 EX3 MA3 WB3
(I4) IF4 IF4 ID4 EX4 MA4 WB4

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 nop I2 nop I3 nop I4
ID I1 nop I2 nop I3 nop I4
EX I1 nop I2 nop I3 nop I4
MA I1 nop I2 nop I3 nop I4
WB I1 nop I2 nop I3 nop I4

PC Calculation Bubbles
(assuming no branch delay slots for now)

Resource
Usage

nop ⇒ pipeline bubble

February 2, 2010 CS152, Spring 2010 5

Speculate next address is PC+4

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

February 2, 2010 CS152, Spring 2010 6

Pipelining Jumps

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD
J, JAL ⇒ nop
... ⇒ IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and

jump?

nop

IRSrcD

I2 I1

304
nop

February 2, 2010 CS152, Spring 2010 7

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 nop I4 I5
EX I1 I2 nop I4 I5
MA I1 I2 nop I4 I5
WB I1 I2 nop I4 I5

Jump Pipeline Diagrams

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: J 304 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 nop nop nop nop
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

nop ⇒ pipeline bubble

February 2, 2010 CS152, Spring 2010 8

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 304 ADD

BEQZ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

nop

IRSrcD

Branch condition is not known until
the execute stage

what action should be taken in the
decode stage ?

A
Y ALU

zero?

February 2, 2010 CS152, Spring 2010 9

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M
Add

PCSrc (pc+4 / jabs / rind / br)

nop

IRSrcD

A
Y ALU

zero?

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage
is not valid

⇒ stall signal is not valid

I2 I1

108
I3

BEQZ?

?

February 2, 2010 CS152, Spring 2010 10

Pipelining Conditional Branches

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 304 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

nop

IR

E M

PCSrc (pc+4/jabs/rind/br)

nop A
Y ALU

zero?
I2 I1

108
I3

BEQZ?

Jump?

IRSrcD

IRSrcE

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage
is not valid

⇒ stall signal is not valid

A
dd

PC

February 2, 2010 CS152, Spring 2010 11

New Stall Signal

stall = (((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D

 + ((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D

) . !((opcodeE=BEQZ).z + (opcodeE=BNEZ).!z)

Don’t stall if the branch is taken. Why?

Instruction at the decode stage is invalid

February 2, 2010 CS152, Spring 2010 12

Control Equations for PC and IR Muxes

PCSrc = Case opcodeE
BEQZ.z, BNEZ.!z ⇒ br
... ⇒ 	

	

 	

Case opcodeD
 J, JAL ⇒ jabs
 JR, JALR ⇒ rind
 ... ⇒ pc+4

IRSrcD = Case opcodeE
BEQZ.z, BNEZ.!z ⇒ nop
... ⇒ 	

	

 	

Case opcodeD
 J, JAL, JR, JALR ⇒ nop
 ... ⇒ IM

Give priority
to the older
instruction,
i.e., execute
stage instruction
over decode
stage instruction

IRSrcE = Case opcodeE
BEQZ.z, BNEZ.!z ⇒ nop
... ⇒ stall.nop + !stall.IRD

February 2, 2010 CS152, Spring 2010 13

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 nop I5
EX I1 I2 nop nop I5
MA I1 I2 nop nop I5
WB I1 I2 nop nop I5

Branch Pipeline Diagrams
(resolved in execute stage)

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

nop ⇒ pipeline bubble

February 2, 2010 CS152, Spring 2010 14

•  One pipeline bubble can be removed if an extra
comparator is used in the Decode stage

PC addr
inst

Inst
Memory

0x4
Add

IR

IR
nop

E Add

PCSrc (pc+4 / jabs / rind/ br)

rd1

GPRs

rs1
rs2

ws
wd rd2

we

nop

Zero detect on
register file output

Pipeline diagram now same as for jumps
D

Reducing Branch Penalty
(resolve in decode stage)

February 2, 2010 CS152, Spring 2010 15

Branch Delay Slots
(expose control hazard to software)

•  Change the ISA semantics so that the instruction that
follows a jump or branch is always executed
–  gives compiler the flexibility to put in a useful instruction where

normally a pipeline bubble would have resulted.

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 304 ADD

Delay slot instruction
executed regardless of

branch outcome

•  Other techniques include more advanced branch
prediction, which can dramatically reduce the branch
penalty... to come later

February 2, 2010 CS152, Spring 2010 16

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4
ID I1 I2 I3 I4
EX I1 I2 I3 I4
MA I1 I2 I3 I4
WB I1 I2 I3 I4

Branch Pipeline Diagrams
(branch delay slot)

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 EX3 MA3 WB3
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

February 2, 2010 CS152, Spring 2010 17

Why an Instruction may not be
dispatched every cycle (CPI>1)

•  Full bypassing may be too expensive to implement
–  typically all frequently used paths are provided
–  some infrequently used bypass paths may increase cycle time and

counteract the benefit of reducing CPI
•  Loads have two-cycle latency

–  Instruction after load cannot use load result
–  MIPS-I ISA defined load delay slots, a software-visible pipeline hazard

(compiler schedules independent instruction or inserts NOP to avoid
hazard). Removed in MIPS-II (pipeline interlocks added in hardware)

»  MIPS:“Microprocessor without Interlocked Pipeline Stages”
•  Conditional branches may cause bubbles

–  kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler. NOPs not
counted in useful CPI (alternatively, increase instructions/program)

February 2, 2010 CS152, Spring 2010 18

CS152 Administrivia
•  PS1/Lab1 due start of class Thursday Feb 11
•  Quiz 1, Tuesday Feb 16

February 2, 2010 CS152, Spring 2010 19

Interrupts:
altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

February 2, 2010 CS152, Spring 2010 20

Causes of Interrupts

•  Asynchronous: an external event
–  input/output device service-request
–  timer expiration
–  power disruptions, hardware failure

•  Synchronous: an internal event (a.k.a. exceptions)
–  undefined opcode, privileged instruction
–  arithmetic overflow, FPU exception
– misaligned memory access
–  virtual memory exceptions: page faults,

 TLB misses, protection violations
–  traps: system calls, e.g., jumps into kernel

Interrupt: an event that requests the attention of the processor

February 2, 2010 CS152, Spring 2010 21

History of Exception Handling

•  First system with exceptions was Univac-I, 1951
–  Arithmetic overflow would either

»  1. trigger the execution a two-instruction fix-up routine at
address 0, or

»  2. at the programmer's option, cause the computer to stop
–  Later Univac 1103, 1955, modified to add external interrupts

» Used to gather real-time wind tunnel data

•  First system with I/O interrupts was DYSEAC,
1954

– Had two program counters, and I/O signal caused switch between
two PCs

–  Also, first system with DMA (direct memory access by I/O device)

[Courtesy Mark Smotherman]

February 2, 2010 CS152, Spring 2010 22

DYSEAC, first mobile computer!

•  Carried in two tractor trailers, 12 tons + 8 tons
•  Built for US Army Signal Corps

[Courtesy Mark Smotherman]

February 2, 2010 CS152, Spring 2010 23

Asynchronous Interrupts:
invoking the interrupt handler

•  An I/O device requests attention by asserting one of
the prioritized interrupt request lines

•  When the processor decides to process the interrupt
–  It stops the current program at instruction Ii, completing all

the instructions up to Ii-1 (precise interrupt)
–  It saves the PC of instruction Ii in a special register (EPC)
–  It disables interrupts and transfers control to a designated

interrupt handler running in the kernel mode

February 2, 2010 CS152, Spring 2010 24

Interrupt Handler
•  Saves EPC before enabling interrupts to allow nested

interrupts ⇒
–  need an instruction to move EPC into GPRs
–  need a way to mask further interrupts at least until EPC can be

saved

•  Needs to read a status register that indicates the
cause of the interrupt

•  Uses a special indirect jump instruction RFE (return-
from-exception) which

–  enables interrupts
–  restores the processor to the user mode
–  restores hardware status and control state

February 2, 2010 CS152, Spring 2010 25

Synchronous Interrupts

•  A synchronous interrupt (exception) is caused by a
particular instruction

•  In general, the instruction cannot be completed and
needs to be restarted after the exception has been
handled

–  requires undoing the effect of one or more partially executed
instructions

•  In the case of a system call trap, the instruction is
considered to have been completed

–  a special jump instruction involving a change to privileged
kernel mode

February 2, 2010 CS152, Spring 2010 26

Exception Handling 5-Stage Pipeline

•  How to handle multiple simultaneous
exceptions in different pipeline stages?

•  How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

February 2, 2010 CS152, Spring 2010 27

Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se

EP
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

February 2, 2010 CS152, Spring 2010 28

Exception Handling 5-Stage Pipeline

•  Hold exception flags in pipeline until commit point (M
stage)

•  Exceptions in earlier pipe stages override later
exceptions for a given instruction

•  Inject external interrupts at commit point (override
others)

•  If exception at commit: update Cause and EPC
registers, kill all stages, inject handler PC into fetch
stage

February 2, 2010 CS152, Spring 2010 29

Speculating on Exceptions
•  Prediction mechanism

–  Exceptions are rare, so simply predicting no exceptions is
very accurate!

•  Check prediction mechanism
–  Exceptions detected at end of instruction execution pipeline,

special hardware for various exception types

•  Recovery mechanism
– Only write architectural state at commit point, so can throw

away partially executed instructions after exception
–  Launch exception handler after flushing pipeline

•  Bypassing allows use of uncommitted
instruction results by following instructions

February 2, 2010 CS152, Spring 2010 30

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 nop I5
EX I1 I2 nop nop I5
MA I1 nop nop nop I5
WB nop nop nop nop I5

Exception Pipeline Diagram

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 nop overflow!
(I2) 100: XOR IF2 ID2 EX2 nop nop
(I3) 104: SUB IF3 ID3 nop nop nop
(I4) 108: ADD IF4 nop nop nop nop
(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

Resource
Usage

February 2, 2010 CS152, Spring 2010 31

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

