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Last time in Lecture 4 
•  Pipelining increases clock frequency, while growing CPI more 

slowly, hence giving greater performance 

      Time     =   Instructions         Cycles            Time 
   Program           Program    *   Instruction   *   Cycle 

Reduces because fewer logic gates 
on critical paths between flip-flops 

Increases because of 
pipeline bubbles 

•  Pipelining of instructions is complicated by HAZARDS: 
–  Structural hazards (two instructions want same hardware resource) 
–  Data hazards (earlier instruction produces value needed by later 

instruction) 
–  Control hazards (instruction changes control flow, e.g., branches or 

exceptions) 

•  Techniques to handle hazards: 
–  Interlock (hold newer instruction until older instructions drain out of 

pipeline and write back results) 
–  Bypass (transfer value from older instruction to newer instruction as 

soon as available somewhere in machine) 
–  Speculate (guess effect of earlier instruction) 
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Control Hazards 

• What do we need to calculate next PC? 

– For Jumps 
»  Opcode, offset and PC 

– For Jump Register 
» Opcode and Register value 

– For Conditional Branches 
» Opcode, PC, Register (for condition), and offset 

– For all other instructions 
» Opcode and PC 

•  have to know it’s not one of above 
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 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) r1 ← (r0) + 10 IF1  ID1  EX1  MA1  WB1 
(I2) r3 ← (r2) + 17  IF2  IF2  ID2  EX2  MA2  WB2 
(I3)        IF3  IF3  ID3  EX3  MA3  WB3 
(I4)                           IF4  IF4  ID4  EX4  MA4  WB4 

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  nop  I2  nop  I3  nop  I4    
ID   I1  nop  I2  nop  I3  nop  I4 
EX          I1  nop  I2  nop  I3  nop  I4 
MA         I1  nop  I2  nop  I3  nop  I4 
WB         I1  nop  I2  nop  I3  nop  I4 

PC Calculation Bubbles 
(assuming no branch delay slots for now) 

Resource  
Usage 

nop  ⇒     pipeline bubble 
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Speculate next address is PC+4 

I1  096  ADD  
I2  100  J 304 
I3  104  ADD 
I4  304  ADD 

kill 

A jump instruction kills (not stalls) 
the following instruction 

stall 

How? 

I2 

I1 

104 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

nop 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 
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Pipelining Jumps 

I1  096  ADD  
I2  100  J 304 
I3  104  ADD 
I4  304  ADD 

kill 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

nop 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

IRSrcD = Case opcodeD 
J, JAL  ⇒ nop 
...    ⇒ IM 

To kill a fetched 
instruction --  Insert 
a mux before IR 

Any 
interaction 
between 
stall and 

jump? 

nop 

IRSrcD 

I2 I1 

304 
nop 
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  nop  I4  I5 
EX          I1  I2  nop  I4  I5 
MA         I1  I2  nop  I4  I5 
WB         I1  I2  nop  I4  I5 

Jump Pipeline Diagrams 

 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: J 304   IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  nop  nop  nop  nop 
(I4) 304: ADD                    IF4  ID4  EX4  MA4  WB4 

Resource  
Usage 

nop  ⇒     pipeline bubble 
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Pipelining Conditional Branches 

I1  096  ADD  
I2  100  BEQZ r1 +200 
I3  104  ADD 
I4  304  ADD 

BEQZ? 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

nop 

IR 

E M 
Add 

PCSrc (pc+4 / jabs / rind / br) 

nop 

IRSrcD 

Branch condition is not known until 
the execute stage  

what action should be taken in the 
decode stage ? 

A 
Y ALU 

zero? 
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Pipelining Conditional Branches 

I1  096  ADD  
I2  100  BEQZ r1 +200 
I3  104  ADD 
I4  304  ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

nop 

IR 

E M 
Add 

PCSrc (pc+4 / jabs / rind / br) 

nop 

IRSrcD 

A 
Y ALU 

zero? 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage 
is not valid 

⇒ stall signal is not valid 

I2 I1 

108 
I3 

BEQZ? 

? 
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Pipelining Conditional Branches 

I1  096  ADD  
I2  100  BEQZ r1 +200 
I3  104  ADD 
I4  304  ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

nop 

IR 

E M 

PCSrc (pc+4/jabs/rind/br) 

nop A 
Y ALU 

zero? 
I2 I1 

108 
I3 

BEQZ? 

Jump? 

IRSrcD 

IRSrcE 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage 
is not valid 

⇒ stall signal is not valid 

A
dd

 

PC 
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New Stall Signal 

stall = (   ((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D   

           + ((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D 

                 ) . !((opcodeE=BEQZ).z + (opcodeE=BNEZ).!z) 

Don’t stall if the branch is taken. Why? 

Instruction at the decode stage is invalid 
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Control Equations for PC and IR Muxes 

PCSrc = Case opcodeE 
BEQZ.z, BNEZ.!z  ⇒ br 
...     ⇒ 	



	

 	

Case opcodeD 
        J, JAL  ⇒   jabs 
        JR, JALR  ⇒   rind 
        ...           ⇒   pc+4 

IRSrcD = Case opcodeE 
BEQZ.z, BNEZ.!z  ⇒ nop 
...     ⇒  	



	

 	

Case opcodeD 
        J, JAL, JR, JALR ⇒ nop 
        ...           ⇒ IM 

Give priority  
to the older  
instruction, 
i.e., execute  
stage instruction 
over decode 
stage instruction 

IRSrcE = Case opcodeE 
BEQZ.z, BNEZ.!z  ⇒ nop 
...     ⇒ stall.nop + !stall.IRD 



February 2, 2010 CS152, Spring 2010 13 

time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  I3  nop  I5 
EX          I1  I2  nop  nop  I5 
MA         I1  I2  nop  nop  I5 
WB         I1  I2  nop  nop  I5 

Branch Pipeline Diagrams 
(resolved in execute stage) 

 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: BEQZ +200  IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  ID3  nop  nop  nop 
(I4) 108:                      IF4  nop  nop  nop  nop 
(I5) 304: ADD                     IF5  ID5  EX5  MA5  WB5 

Resource  
Usage 

nop  ⇒     pipeline bubble 
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•  One pipeline bubble can be removed if an extra 
comparator is used in the Decode stage 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

IR 

IR 
nop 

E Add 

PCSrc (pc+4 / jabs / rind/ br) 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

nop 

Zero detect on 
register file output 

Pipeline diagram now same as for jumps 
D 

Reducing Branch Penalty 
(resolve in decode stage) 
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Branch Delay Slots 
(expose control hazard to software) 

•  Change the ISA semantics so that the instruction that 
follows a jump or branch is always executed 
–  gives compiler the flexibility to put in a useful instruction where 

normally a pipeline bubble would have resulted. 

I1  096  ADD  
I2  100  BEQZ r1 +200 
I3  104  ADD 
I4  304  ADD 

Delay slot instruction 
executed regardless of 

branch outcome 

•  Other techniques include more advanced branch 
prediction, which can dramatically reduce the branch 
penalty... to come later  
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4    
ID   I1  I2  I3  I4 
EX          I1  I2  I3  I4 
MA         I1  I2     I3     I4 
WB         I1  I2  I3     I4 

Branch Pipeline Diagrams 
(branch delay slot) 

 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  WB1 
(I2) 100: BEQZ +200  IF2  ID2  EX2  MA2  WB2 
(I3) 104: ADD    IF3  ID3  EX3  MA3  WB3 
(I4) 304: ADD                    IF4  ID4  EX4  MA4  WB4 

Resource  
Usage 
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Why an Instruction may not be 
dispatched every cycle (CPI>1) 

•  Full bypassing may be too expensive to implement 
–  typically all frequently used paths are provided 
–  some infrequently used bypass paths may increase cycle time and 

counteract the benefit of reducing CPI 
•   Loads have two-cycle latency 

–  Instruction after load cannot use load result 
–  MIPS-I ISA defined load delay slots, a software-visible pipeline hazard 

(compiler schedules independent instruction or inserts NOP to avoid 
hazard). Removed in MIPS-II (pipeline interlocks added in hardware) 

»  MIPS:“Microprocessor without Interlocked Pipeline Stages” 
•   Conditional branches may cause bubbles 

–  kill following instruction(s) if no delay slots 

Machines with software-visible delay slots may execute significant 
number of NOP instructions inserted by the compiler.  NOPs not 
counted in useful CPI (alternatively, increase instructions/program) 
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CS152 Administrivia 
•  PS1/Lab1 due start of class Thursday Feb 11 
•  Quiz 1, Tuesday Feb 16 
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Interrupts: 
altering the normal flow of control 

Ii-1 HI1 

HI2 

HIn 

Ii 

Ii+1 

program 
interrupt  
handler 

An external or internal event  that needs to be processed by 
another (system) program. The event is usually unexpected or 
rare from program’s point of view.  
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Causes of Interrupts 

•  Asynchronous: an external event  
–  input/output device service-request 
–  timer expiration 
–  power disruptions, hardware failure 

•  Synchronous: an internal event (a.k.a. exceptions) 
–  undefined opcode, privileged instruction 
–  arithmetic overflow, FPU exception 
– misaligned memory access  
–  virtual memory exceptions: page faults, 

            TLB misses, protection violations 
–  traps:  system calls, e.g., jumps into kernel  

Interrupt: an event that requests the attention of the processor 
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History of Exception Handling 

•  First system with exceptions was Univac-I, 1951 
–  Arithmetic overflow would either 

»  1. trigger the execution a two-instruction fix-up routine at 
address 0, or 

»  2. at the programmer's option, cause the computer to stop 
–  Later Univac 1103, 1955, modified to add external interrupts 

» Used to gather real-time wind tunnel data 

•  First system with I/O interrupts was DYSEAC, 
1954 

– Had two program counters, and I/O signal caused switch between 
two PCs 

–  Also, first system with DMA (direct memory access by I/O device) 

[Courtesy Mark Smotherman] 
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DYSEAC, first mobile computer! 

•  Carried in two tractor trailers, 12 tons + 8 tons 
•  Built for US Army Signal Corps 

[Courtesy Mark Smotherman] 
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Asynchronous Interrupts: 
invoking the interrupt handler 

•  An I/O device requests attention by asserting one of 
the prioritized interrupt request lines 

•  When the processor decides to process the interrupt  
–  It stops the current program at instruction Ii, completing all 

the instructions up to Ii-1        (precise interrupt) 
–  It saves the PC of instruction Ii in a special register (EPC) 
–  It disables interrupts and transfers control to a designated 

interrupt handler running in the kernel mode 
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Interrupt Handler 
•  Saves EPC before enabling interrupts to allow nested 

interrupts ⇒    
–  need an instruction to move EPC into GPRs  
–  need a way to mask further interrupts at least until EPC can be 

saved 

•  Needs to read a status register that indicates the 
cause of the interrupt 

•  Uses a special indirect jump instruction RFE (return-
from-exception) which 

–  enables interrupts 
–  restores the processor to the user mode 
–  restores hardware status and control state 
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Synchronous Interrupts 

•  A synchronous interrupt (exception) is caused by a 
particular instruction 

•  In general, the instruction cannot be completed and 
needs to be restarted after the exception has been 
handled 

–  requires undoing the effect of one or more partially executed 
instructions 

•  In the case of a system call trap, the instruction is 
considered to have been completed   

–  a special jump instruction involving a change to privileged 
kernel mode 
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Exception Handling 5-Stage Pipeline 

•  How to handle multiple simultaneous 
exceptions in different pipeline stages? 

•  How and where to handle external 
asynchronous interrupts? 

PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode Overflow Data address 

Exceptions 
PC address 
Exception 

Asynchronous Interrupts 
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Exception Handling 5-Stage Pipeline 

PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode 

Overflow Data address 
Exceptions 

PC address 
Exception 

Asynchronous 
Interrupts 

Exc 
D 

PC 
D 

Exc 
E 

PC 
E 

Exc 
M 

PC 
M 

C
au

se
 

EP
C
 

Kill D 
Stage 

Kill F 
Stage 

Kill E 
Stage 

Select 
Handler 
PC 

Kill 
Writeback 

Commit 
Point 
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Exception Handling 5-Stage Pipeline 

•  Hold exception flags in pipeline until commit point (M 
stage) 

•  Exceptions in earlier pipe stages override later 
exceptions for a given instruction 

•  Inject external interrupts at commit point (override 
others) 

•  If exception at commit: update Cause and EPC 
registers, kill all stages, inject handler PC into fetch 
stage 
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Speculating on Exceptions 
•  Prediction mechanism 

–  Exceptions are rare, so simply predicting no exceptions is 
very accurate! 

•  Check prediction mechanism 
–  Exceptions detected at end of instruction execution pipeline, 

special hardware for various exception types 

•  Recovery mechanism 
– Only write architectural state at commit point, so can throw 

away partially executed instructions after exception 
–  Launch exception handler after flushing pipeline 

•  Bypassing allows use of uncommitted 
instruction results by following instructions 
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time 
t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

IF  I1  I2  I3  I4  I5   
ID   I1  I2  I3  nop  I5 
EX          I1  I2  nop  nop  I5 
MA         I1  nop  nop  nop  I5 
WB         nop  nop  nop  nop  I5 

Exception Pipeline Diagram 

 time 
 t0  t1  t2  t3  t4  t5  t6  t7  . . . . 

(I1) 096: ADD  IF1  ID1  EX1  MA1  nop   overflow! 
(I2) 100: XOR    IF2  ID2  EX2  nop  nop 
(I3) 104: SUB     IF3  ID3  nop  nop  nop 
(I4) 108: ADD                    IF4  nop  nop  nop  nop 
(I5) Exc. Handler code                   IF5  ID5  EX5  MA5  WB5 

Resource  
Usage 
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