CS 152 Computer Architecture and
Engineering

Lecture 6 - Memory

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

February 4, 2010 CS152, Spring 2010

Last time in Lecture 5

Control hazards (branches, interrupts) are most
difficult to handle as they change which instruction
should be executed next

Speculation commonly used to reduce effect of
control hazards (predict sequential fetch, predict no
exceptions)

Branch delay slots make control hazard visible to
software

Precise exceptions: stop cleanly on one instruction,
all previous instructions completed, no following
Instructions have changed architectural state

To implement precise exceptions in pipeline, shift
faulting instructions down pipeline to “commit” point,
where exceptions are handled in program order

February 4, 2010 CS152, Spring 2010

Early Read-Only Memory Technologies

o

Punched cards, From early
1700s through Jaquard Loom,

Babbage, and then IBM Punched paper tape,

instruction stream in

Diode Matrix, EDSAC-2 Harvard Mk 1

Mcode store

v

IBM Balanced Capacitor
ROS

IBM Card Capacitor ROS
February 4, 2010 CS152, Spring 2010 3

Early Read/Write Main Memory
Technologies

Babbage, 1800s: Digits
stored on mechanical wheels

_—
®

m z4 .8
¥ "
g |
5 N«
—_—
- v

I8
~

1" |
= 2 |
4 —
CE o .

o |

E — _——;-—--Q-_l-—r—
: i 5 J oy 1
SR R AR RS - 2 Rl SR

1] |
i |
"”4 5 o

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

February 4, 2010 CS152, Spring 2010 4

Core Memory

« Core memory was first large scale reliable main memory
— invented by Forrester in late 40s/early 50s at MIT for Whirlwind project

 Bits stored as magnetization polarity on small ferrite cores
threaded onto 2 dimensional grid of wires

» Coincident current pulses on X and Y wires would write cell
and also sense original state (destructive reads)

« Robust, non-volatile storage "lllllll!l!lllll 1,,I |

« Used on space shuttle
computers until recently

» Cores threaded onto wires i\ : ':w;:_’ml =.
by hand (25 billion a year at |- A-_.‘,g__-_ . -«-,__,..ﬁ_,,__‘
peak production) i J i

RS

5 A

« Core access time ~ 1us ° ’W { .

DEC PDP-8/E Board
4K words x 12 bits, (1968)

February 4, 2010 CS152, Spring 2U1U 5

Semiconductor Memory

« Semiconductor memory began to be competitive in early
1970s

— Intel formed to exploit market for semiconductor memory

— Early semiconductor memory was Static RAM (SRAM). SRAM
cell internals similar to a latch (cross-coupled inverters).

* First commercial Dynamic RAM (DRAM) was Intel 1103
— 1Kbit of storage on single chip
— charge on a capacitor used to hold value

« Semiconductor memory quickly replaced core in ‘70s

February 4, 2010 CS152, Spring 2010 6

One Transistor Dynamic RAM
[Dennard, IBM]

1-T DRAM Cell

I word
|

_I__l__.\ access transistor
Viler

TiN/Taz0s/W

TiN top electrode (Vgge) Capacitor

Storage

capacitor (FET gate,
trench, stack)

poly
word
line

access

transistor
February 4, 2010 CS152, Spring 2010

Modern DRAM Structure

T T38@nm

20.0kV X100K

ea6e898e8r7

[Samsung, sub-70nm DRAM, 2004]

8

CS152, Spring 2010

February 4, 2010

DRAM Architecture

bit lines)
Col. / Col. word lines
1 M /
) Row 1
2 TR E RS
Ve s (AL S
B HERREER
3D Row 2N
2o ok t\
Memory cell
one bit
N+M M/ .| Column Decoder & ()
Sense Amplifiers
Data% D

e Bits stored in 2-dimensional arrays on chip

e Modern chips have around 4 logical banks on each chip

— each logical bank physically implemented as many smaller arrays

February 4, 2010 CS152, Spring 2010 9

DRAM Operation

Three steps in read/write access to a given bank
 Row access (RAS)

— decode row address, enable addressed row (often multiple Kb in row)
— bitlines share charge with storage cell

— small change in voltage detected by sense amplifiers which latch whole
row of bits

sense amplifiers drive bitlines full rail to recharge storage cells

. Column access (CAS)

— decode column address to select small number of sense amplifier
latches (4, 8, 16, or 32 bits depending on DRAM package)

— on read, send latched bits out to chip pins

— on write, change sense amplifier latches which then charge storage
cells to required value

— can perform multiple column accesses on same row without another
row access (burst mode)

* Precharge
— charges bit lines to known value, required before next row access

Each step has a latency of around 15-20ns in modern DRAMs

Various DRAM standards (DDR, RDRAM) have different ways of encoding the
signals for transmission to the DRAM, but all share same core architecture

February 4, 2010 CS152, Spring 2010 10

Double-Data Rate (DDR2) DRAM

ZOOMHZ TO T

1 | 1

E ' ,: - ‘_L v"v_~"
w YW 7 A D V. AKAK K

COMMANDS Mm ///// Nop6 YK Nop6 //// READ? ///// NoP6 //// PR ///// NopS >@< NOPS //// At X

Row | Colum Precharge Row’
ADDRESS //////// //////0(W///////////f////////////////@(Coln ><///A/ ///////// Wi /////7/////////////////// / ///////X R

Aio ///////////M A ><//////////////////////////////// :

; W////////////////////////////&(w0

! ONE BANK
1

i i

N IIIIINLE DY

tRP

Case 1: 'AC (MIN) and 'DQSCK (MIN)

DQS, DQS# ' ' ' I I TN
. | | 1z (I\IAIN)—> ! PTo
DQ! : : < T ;(f >:< >£
4z (:MIN) —/‘ tAC f(MIN) _)E tHz éMIN) Ji
400Mb/s
[Micron, 266Mb DDR2 SDRAM datasheet | Data Rate

February 4, 2010 CS152, Spring 2010 11

DRAM Packaging

~7
Clock and control signals——
J DRAM :
Address lines multiplexed chip
row/column address 5
Data bus ,I, L..,
(4b,8b,16b,32b) AT

ILAR LA 1010
20
v ettty o

 DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers

to drive signals to all chips)

« Data pins work together to return wide word
(e.g., 64-bit data bus using 16x4-bit parts)

February 4, 2010 CS152, Spring 2010 12

»
-
~
-~
-
-
»
.

»

-
-
-
-
-
-
-
-
-
-
-
-
-
v

S SR baN T ANV AR NNS NRLRRAATERAS AAA R Ak b

CPU-Memory Bottleneck

CPU [Memory

Performance of high-speed computers is usually
limited by memory bandwidth & latency

e Latency (time for a single access)
Memory access time >> Processor cycle time

e Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,
=1+m memory references / instruction
=CPI = 1 requires 1+m memory refs / cycle
(assuming MIPS RISC ISA)

February 4, 2010 CS152, Spring 2010 13

Processor-DRAM Gap (latency)

1000

100

—
o

Performance

O+ NMTMOUN g O N M MO

00 DWW WMDRO RV NN QAN A D

DDA D AN G D

T Y4 YT v~ v~ + YT Y\ Y/ Y Y v v +d
Time

Performance Gap:
(grows 50% / year)

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

February 4, 2010

CS152, Spring 2010

14

Physical Size Affects Latency

CPU

mall
emory

* Signals have
further to travel

 Fan out to more
locations

February 4, 2010

CPU

Big Memory

CS152, Spring 2010

15

Memory Hierarchy

A Small, B .
Big, Slow
Fast
CPU Memory —] Memory
Y
(RF, SRAM) (DRAM)

holds frequently used data

e capacity: Register << SRAM << DRAM why?
o Jatency: Register << SRAM << DRAM why?
e bandwidth: on-chip >> off-chip why ?

On a data access:
if data € fast memory = low latency access (SRAM)
If data & fast memory = long latency access (DRAM)

February 4, 2010 CS152, Spring 2010 16

BL* BL !
BL* BL §
On-ChIp ‘-1 3 DRAM On
: 2 BL ; -
SRAM in P WLA/jﬁemory chip

?
3

logic chip

?

'l”l oL nj R i .ﬂ
-
LER g | 1: :f ‘o

P — s - -'
i e P 1 Do il srd bt WY
— Sy P s+ o) B D 8 - W

-

oW

. Foss, “Implementin
1 Memory cell in 0.5um processes [Applicaﬁoﬁ_sp ecifi Cg
a) Gate Array SRAM Memory”, ISSCC 1996]

b} Embedded SRAM
¢) Standard SRAM (6T cell with local interconnect)

R R s MR T A M S SR e

d) ASIC DRAM

e) Standard DRAM (stacked cell)
Memory Process Cell size Cell Bits in Gate size Gate Gates in

(um?) efficiency 100mm* 10%) (um?) utilization 100mm?(10%

Gate array SRAM 3-metal ASIC 370 80% 216 185 70% 378
Embedded SRAM 3-metal ASIC 67 70% 1045 185 70% 378
Standard SRAM 2-metal 6T local int. 43 65% 1612 245 40% 163
Embedded ASIC-DRAM 3-metal ASIC 23 80% 2609 185 70% 378
Standard DRAM 2-metal stacked cell 3.2 50% 15625 311 40% 97

Febru Table 1: Memory and logic density for a variety of 0.5um implementations.

CS152 Administrivia

« Class accounts available today
« Handed out in Section at 2pm

February 4, 2010 CS152, Spring 2010 18

Management of Memory Hierarchy

« Small/fast storage, e.g., registers
— Address usually specified in instruction

— Generally implemented directly as a register file

» but hardware might do things behind software’s back, e.g.,
stack management, register renaming

» Larger/slower storage, e.g., main memory
— Address usually computed from values in register

— Generally implemented as a hardware-managed
cache hierarchy

» hardware decides what is kept in fast memory

» but software may provide “hints”, e.g., don’t cache or
prefetch

February 4, 2010 CS152, Spring 2010 19

Real Memory Reference Patterns

| -))
' o 2 — -—— -
36r T LR St ’oa-.._ma\ poenas b B! ., e
L LA Ll

34 - . . - .’ A - . - v . - . ""’.
- =0 - — - — .
. 0t s i e :

32 ’ ‘. .o - . . . ’ g o .h_ . : - - - . S

PTG g Lt i“'lllll(dﬁll”{ e l"ll'l llll UL | ll' L= P _ -~

o..J‘l:pfl.{T_i.ﬂ_JJ\ YIS AWLIT T T ﬁe\,l.lt.l
30 — % 3""“': 3 . .»' 'S 3_ . -.?- :v 5 . 2 R o

ST L LA .:0 o ‘o J oJan l 4 -

:'“r“_-:::',:-e:m '

22+ e, ¥ . . : . s o e s tar E— - —
:, - v = . - s m S o= — > ;_;.

Memory Address (one dot per access)

20f DRI L S A DU IR P 0 MR ALMA L L MB LTy S el B . - 4 . o .o m
a METEIES L 1C e = >
L P e T L) 00} UL LS e L .n'-“ pa sty

=TIV Uttt 00 R AR LR B RUE (38 WE1a. u-nm— | b - R o e o
18J% st
: : Time
Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory.
IBM Systems Journal 10(3): 168-192 (1971)

February 4, 2010 CS152, Spring 2010

Typical Memory Reference Patterns

Address n loop iterations

Instruction © o o 7T o o - .
fetches ° o

subroutine subroutine

call
Stack S —_return
© o 06 o 06 © o o o o
accesses o _ W o
® ©o \06 0o o o

Data
accesses

Time

February 4, 2010 CS152, Spring 2010

Common Predictable Patterns

Two predictable properties of memory references:

— Temporal Locality: If a location is referenced it is
likely to be referenced again in the near future.

— Spatial Locality: If a location is referenced it is likely
that locations near it will be referenced in the near
future.

February 4, 2010 CS152, Spring 2010

Memory Address (one dot per access)

Memory Reference Patterns

“P- T L -
. .. 3 S

36r N A Pt e T e T T TP s o —— - — —
| a .

341 et : -

o . 0 . . . Y o .
P -uqmm«mu ' l.glul PN 4 e
A S LN, T A Y Y L : '

. h’iuk'll‘ “‘n '}F

LR R T
.

[P b m—— A i p s rem . - . . . - .

20' LRI S A DI P 0 AR AL L L MM LAy S s i B
M ML AR DL ' LR L R
AN uo' 5w ared n; W e g ¥ et e,

o lfﬂ“nn'”l’m.‘llﬂﬂlu“'ln(llll.ﬂlll fiyda lllilll.llll."‘ A |
"
18J

Time

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal

February 4, 2010 CS152, Sy 268492 (1971)

Caches

Caches exploit both types of predictability:

— Exploit temporal locality by remembering the
contents of recently accessed locations.

— Exploit spatial locality by fetching blocks of data
around recently accessed locations.

February 4, 2010 CS152, Spring 2010

Inside a Cache

Processor

~ Address

J

Data

copy of main
memory

location 100\

Address
Tag

February 4, 2010

CACHE

Address

Data

copy of main
memory
location 101

Main
Memory

100

— 304

6848

416

)—» Line

> Data Block

CS152, Spring 2010

Cache Algorithm (Read)

Look at Processor Address, search cache tags to find match. Then

either
Found in cache Not in cache
a.k.a. HIT a.k.a. MISS
Return copy Read block of data from
of data from Main Memory
cache

Wait ...

Return data to processor
and update cache

Q: Which line do we replace?

February 4, 2010 CS152, Spring 2010

Placement Policy

Block NUMbEr 1 554 567590123456789 012345678801
Memory
Set Number o 1 2 3 01234567
Cache
Fully (2-way) Set Direct
Associative Associative Mapped
block 12 anywhere anywhere in only into
set 0 block 4
can be placed
(12 mod 4) (12 mod 8)

February 4, 2010

CS152, Spring 2010

27

Direct-Mapped Cache

2k
lines

Block
-I;ag Index Offset
/t //I(
V| _Tag Data Block
t
N~
HIT

February 4, 2010

CS152, Spring 2010

Data Word or Byte

Direct Map Address Selection

higher-order vs. lower-order address bits

Block
Index Tag Offeet
]
K
V| _Tag Data Block

2k
lines

HIT

February 4, 2010

N~

CS152, Spring 2010

Data Word or Byte

2-Way Set-Associative Cache

Ta Index Block —x
9 Offset b

K
V| Tag |Data Block V| Tag jData Block

Data
Word
or Byte

HIT

February 4, 2010 CS152, Spring 2010

Fully Associative Cache

Tag

Block
o LOffset

V Ta-

Data Block

February 4, 2010

CS152, Spring 2010

HIT

Replacement Policy

In an associative cache, which block from a set
should be evicted when the set becomes full?

® Random

e Least Recently Used (LRU)
e LRU cache state must be updated on every access
e true implementation only feasible for small sets (2-way)
e pseudo-LRU binary tree often used for 4-8 way

e First In, First Out (FIFO) a.k.a. Round-Robin
e used in highly associative caches

e Not Least Recently Used (NLRU)
e FIFO with exception for most recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses
February 4, 2010 CS152, Spring 2010 32

Acknowledgements

* These slides contain material developed and
copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

« MIT material derived from course 6.823
« UCB material derived from course CS252

February 4, 2010 CS152, Spring 2010 33

