
February 9, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 7 - Memory Hierarchy-II

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 9, 2010 CS152, Spring 2010 2

Last time in Lecture 6
•  Dynamic RAM (DRAM) is main form of main memory

storage in use today
–  Holds values on small capacitors, need refreshing (hence dynamic)
–  Slow multi-step access: precharge, read row, read column

•  Static RAM (SRAM) is faster but more expensive
–  Used to build on-chip memory for caches

•  Cache holds small set of values in fast memory
(SRAM) close to processor

–  Need to develop search scheme to find values in cache, and
replacement policy to make space for newly accessed locations

•  Caches exploit two forms of predictability in memory
reference streams

–  Temporal locality, same location likely to be accessed again soon
–  Spatial locality, neighboring location likely to be accessed soon

February 9, 2010 CS152, Spring 2010 3

Placement Policy

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

February 9, 2010 CS152, Spring 2010

Direct-Mapped Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k b

 t

HIT Data Word or Byte

 2k

lines

February 9, 2010 CS152, Spring 2010

2-Way Set-Associative Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k

 b

HIT

 Tag Data Block V

Data
Word
or Byte

 =

 t

February 9, 2010 CS152, Spring 2010

Fully Associative Cache

 Tag Data Block V

 =

B
lo

ck

O
ff
se

t

Ta

g

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

February 9, 2010 CS152, Spring 2010 7

Replacement Policy
In an associative cache, which block from a set
should be evicted when the set becomes full?

•  Random

•  Least Recently Used (LRU)
•  LRU cache state must be updated on every access
•  true implementation only feasible for small sets (2-way)
•  pseudo-LRU binary tree often used for 4-8 way

•  First In, First Out (FIFO) a.k.a. Round-Robin
•  used in highly associative caches

•  Not Most Recently Used (NMRU)
•  FIFO with exception for most recently used block or blocks

This is a second-order effect. Why?
Replacement only happens on misses

February 9, 2010 CS152, Spring 2010 8

Word3 Word0 Word1 Word2

Block Size and Spatial Locality

Larger block size has distinct hardware advantages
•  less tag overhead
•  exploit fast burst transfers from DRAM
•  exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits 32-b bits

Tag

Block is unit of transfer between the cache and memory

4 word block,
b=2

Fewer blocks => more conflicts. Can waste bandwidth.

February 9, 2010 CS152, Spring 2010 9

CPU-Cache Interaction
(5-stage pipeline)

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

nop

hit?
PCen

Decode,
Register

Fetch
wdata

R

addr

wdata

rdata
Primary
Data
Cache

we A

B

Y Y ALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

February 9, 2010 CS152, Spring 2010 10

Improving Cache Performance

Average memory access time =
 Hit time + Miss rate x Miss penalty

To improve performance:
•  reduce the hit time
•  reduce the miss rate
•  reduce the miss penalty

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx 8-32KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

February 9, 2010 CS152, Spring 2010

Serial-versus-Parallel Cache and
Memory access

α is HIT RATIO: Fraction of references in cache
1 - α is MISS RATIO: Remaining references

CACHE Processor
Main
Memory

Addr Addr

Data Data

Average access time for serial search: tcache + (1 - α) tmem

CACHE Processor
Main
Memory

Addr

Data Data

Average access time for parallel search: α tcache + (1 - α) tmem

•  Savings are usually small, tmem >> tcache, hit ratio α high
• High bandwidth required for memory path
•  Complexity of handling parallel paths can slow tcache

February 9, 2010 CS152, Spring 2010 12

Causes for Cache Misses

•  Compulsory: first-reference to a block a.k.a. cold
 start misses

 - misses that would occur even with infinite cache

•  Capacity: cache is too small to hold all data needed
 by the program
 - misses that would occur even under perfect
 replacement policy

•  Conflict: misses that occur because of collisions
 due to block-placement strategy

- misses that would not occur with full associativity

February 9, 2010 CS152, Spring 2010 13

Effect of Cache Parameters on Performance

•  Larger cache size
+  reduces capacity and conflict misses
-  hit time will increase

•  Higher associativity
+  reduces conflict misses
-  may increase hit time

•  Larger block size
+  reduces compulsory and capacity (reload) misses
-  increases conflict misses and miss penalty

February 9, 2010 CS152, Spring 2010 14

Write Policy Choices
•  Cache hit:

– write through: write both cache & memory
» Generally higher traffic but simpler pipeline & cache design

– write back: write cache only, memory is written only when the
entry is evicted

»  A dirty bit per block further reduces write-back traffic
» Must handle 0, 1, or 2 accesses to memory for each load/store

•  Cache miss:
–  no write allocate: only write to main memory
– write allocate (aka fetch on write): fetch into cache

•  Common combinations:
–  write through and no write allocate
–  write back with write allocate

February 9, 2010 CS152, Spring 2010 15

CS152 Administrivia
PS1/Lab1 due at start of class on Thursday

Krste’s office hours now 2-3pm, but Monday is a UCB
holiday so no office hours.

Quiz 1 on Tuesday.

February 9, 2010 CS152, Spring 2010 16

Write Performance

 Tag Data V

 =

Block
Offset

 Tag Index

 t k
 b

 t

HIT Data Word or Byte

 2k

lines

WE

February 9, 2010 CS152, Spring 2010 17

Reducing Write Hit Time

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle for
data write if hit

Solutions:
•  Design data RAM that can perform read and write in

one cycle, restore old value after tag miss

•  Fully-associative (CAM Tag) caches: Word line only
enabled if hit

•  Pipelined writes: Hold write data for store in single
buffer ahead of cache, write cache data during next
store’s tag check

February 9, 2010 CS152, Spring 2010 18

Pipelining Cache Writes

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write Data Delayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L
S

1 0

Hit?
Data from a store hit written into data portion of cache
during tag access of subsequent store

February 9, 2010 CS152, Spring 2010 19

Write Buffer to Reduce Read Miss Penalty

Processor is not stalled on writes, and read misses can go
ahead of write to main memory

Problem: Write buffer may hold updated value of location needed by a read
miss

Simple scheme: on a read miss, wait for the write buffer to go empty
Faster scheme: Check write buffer addresses against read miss addresses,

if no match, allow read miss to go ahead of writes, else, return value in
write buffer

Data
Cache

Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache

February 9, 2010 CS152, Spring 2010 20

Block-level Optimizations

•  Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss penalty could be large.

•  Sub-block placement (aka sector cache)
– A valid bit added to units smaller than full block, called sub-blocks
– Only read a sub-block on a miss
–  If a tag matches, is the word in the cache?

100
300
204

1 1 1 1
1   1 0 0
0 1 0 1

February 9, 2010 CS152, Spring 2010 21

Multilevel Caches
Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

February 9, 2010 CS152, Spring 2010 22

Presence of L2 influences L1 design

• Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time and

reduced L1 miss penalty
– Reduces average access energy

• Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim

write back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1

and reload from L2 when parity error detected on L1 read)

February 9, 2010 CS152, Spring 2010 23

Inclusion Policy

•  Inclusive multilevel cache:
–  Inner cache holds copies of data in outer cache
–  External coherence snoop access need only

check outer cache
•  Exclusive multilevel caches:

–  Inner cache may hold data not in outer cache
–  Swap lines between inner/outer caches on miss
–  Used in AMD Athlon with 64KB primary and

256KB secondary cache
Why choose one type or the other?

February 9, 2010 CS152, Spring 2010 2/17/2009 24

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Level 1: 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single cycle
latency

Level 2: 256KB, 4-way s.a,
128B line, quad-port (4
load or 4 store), five cycle
latency

Level 3: 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency

February 9, 2010 CS152, Spring 2010

Power 7 On-Chip Caches [IBM 2009]

25

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM

25-cycle latency to local
slice

February 9, 2010 CS152, Spring 2010 26

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

