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Last time in Lecture 6 
•  Dynamic RAM (DRAM) is main form of main memory 

storage in use today 
–  Holds values on small capacitors, need refreshing (hence dynamic) 
–  Slow multi-step access: precharge, read row, read column 

•  Static RAM (SRAM) is faster but more expensive 
–  Used to build on-chip memory for caches 

•  Cache holds small set of values in fast memory 
(SRAM) close to processor 

–  Need to develop search scheme to find values in cache, and 
replacement policy to make space for newly accessed locations 

•  Caches exploit two forms of predictability in memory 
reference streams 

–  Temporal locality, same location likely to be accessed again soon 
–  Spatial locality, neighboring location likely to be accessed soon 
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Placement Policy 

0 1 2 3 4 5 6 7 0     1      2     3 Set Number 

Cache 

     Fully   (2-way) Set        Direct 
Associative  Associative         Mapped 
anywhere  anywhere in          only into 

        set 0                block 4   
           (12 mod 4)     (12 mod 8) 

0 1 2 3 4 5 6 7 8 9 
1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9 

3 3 
0 1 

Memory 

Block Number 

block 12  
can be placed 



February 9, 2010 CS152, Spring 2010 

Direct-Mapped Cache 
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2-Way Set-Associative Cache 
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Fully Associative Cache 
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Replacement Policy 
In an associative cache, which block from a set 
should be evicted when the set becomes full? 

•  Random 

•  Least Recently Used (LRU) 
•  LRU cache state must be updated on every access 
•  true implementation only feasible for small sets (2-way) 
•  pseudo-LRU binary tree often used for 4-8 way 

•  First In, First Out (FIFO) a.k.a. Round-Robin 
•  used in highly associative caches 

•  Not Most Recently Used (NMRU) 
•  FIFO with exception for most recently used block or blocks 

This is a second-order effect.  Why? 
Replacement only happens on misses 
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Word3 Word0 Word1 Word2 

Block Size and Spatial Locality 

Larger block size has distinct hardware advantages 
•  less tag overhead 
•  exploit fast burst transfers from DRAM 
•  exploit fast burst transfers over wide busses 

What are the disadvantages of increasing block size? 

block address              offsetb 

2b = block size a.k.a line size (in bytes) 

Split CPU 
address 

b bits 32-b bits 

Tag 

Block is unit of transfer between the cache and memory 

4 word block, 
b=2 

Fewer blocks => more conflicts.  Can waste bandwidth. 
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CPU-Cache Interaction 
(5-stage pipeline) 
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Improving Cache Performance 

Average memory access time = 
  Hit time + Miss rate x Miss penalty 

To improve performance: 
•  reduce the hit time 
•  reduce the miss rate 
•  reduce the miss penalty 

What is the simplest design strategy? 

Biggest cache that doesn’t increase hit time past 1-2 cycles 
(approx 8-32KB in modern technology) 

[ design issues more complex with out-of-order superscalar processors ] 
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Serial-versus-Parallel Cache and 
Memory access 

α is HIT RATIO: Fraction of references in cache 
1 - α is MISS RATIO: Remaining references 

CACHE Processor  
Main 
Memory  

Addr Addr 

Data Data 

Average access time for serial search:     tcache + (1 - α) tmem 

CACHE Processor  
Main 
Memory  

Addr 

Data Data 

Average access time for parallel search:  α tcache + (1 - α) tmem 

•  Savings are usually small, tmem >> tcache, hit ratio α high 
• High bandwidth required for memory path  
•  Complexity of handling parallel paths can slow tcache  
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Causes for Cache Misses 

•  Compulsory:  first-reference to a block a.k.a. cold 
           start misses 

 - misses that would occur even with infinite cache 

•  Capacity:  cache is too small to hold all data needed  
 by the program 
 - misses that would occur even under perfect 
   replacement policy 

•  Conflict:  misses that occur because of collisions 
  due to block-placement strategy 

- misses that would not occur with full associativity 
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Effect of Cache Parameters on Performance 

•  Larger cache size 
+  reduces capacity and conflict misses   
-   hit time will increase 

•  Higher associativity 
+  reduces conflict misses 
-   may increase hit time 

•  Larger block size 
+  reduces compulsory and capacity (reload) misses 
-   increases conflict misses and miss penalty 
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Write Policy Choices  
•  Cache hit: 

– write through: write both cache & memory 
» Generally higher traffic but simpler pipeline & cache design 

– write back: write cache only, memory is written only when the 
entry is evicted 

»  A dirty bit per block further reduces write-back traffic 
» Must handle 0, 1, or 2 accesses to memory for each load/store 

•  Cache miss: 
–  no write allocate:  only write to main memory 
– write allocate (aka fetch on write):  fetch into cache 

•  Common combinations: 
–   write through and no write allocate 
–   write back with write allocate 
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CS152 Administrivia 
PS1/Lab1 due at start of class on Thursday 

Krste’s office hours now 2-3pm, but Monday is a UCB 
holiday so no office hours. 

Quiz 1 on Tuesday. 
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Write Performance 
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Reducing Write Hit Time 

Problem: Writes take two cycles in memory 
stage, one cycle for tag check plus one cycle for 
data write if hit 

Solutions: 
•  Design data RAM that can perform read and write in 

one cycle, restore old value after tag miss 

•  Fully-associative (CAM Tag) caches: Word line only 
enabled if hit 

•  Pipelined writes: Hold write data for store in single 
buffer ahead of cache, write cache data during next 
store’s tag check 
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Pipelining Cache Writes 
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Write Buffer to Reduce Read Miss Penalty 

Processor is not stalled on writes, and read misses can go 
ahead of write to main memory 

Problem: Write buffer may hold updated value of location needed by a read 
miss 

Simple scheme: on a read miss, wait for the write buffer to go empty 
Faster scheme: Check write buffer addresses against read miss addresses, 

if no match, allow read miss to go ahead of writes, else, return value in 
write buffer 
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Block-level Optimizations 

•  Tags are too large, i.e., too much overhead 
– Simple solution: Larger blocks, but miss penalty could be large. 

•  Sub-block placement (aka sector cache) 
– A valid bit added to units smaller than full block, called sub-blocks 
– Only read a sub-block on a miss 
–  If a tag matches, is the word in the cache? 

100 
300 
204 

1             1              1             1   
1            1              0             0 
0             1              0             1 
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Multilevel Caches 
Problem: A memory cannot be large and fast 
Solution: Increasing sizes of cache at each level 

CPU L1$ L2$ DRAM 

Local miss rate = misses in cache / accesses to cache 

Global miss rate = misses in cache / CPU memory accesses 

Misses per instruction = misses in cache / number of instructions 
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Presence of L2 influences L1 design 

• Use smaller L1 if there is also L2 
– Trade increased L1 miss rate for reduced L1 hit time and 

reduced L1 miss penalty 
– Reduces average access energy 

• Use simpler write-through L1 with on-chip L2 
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip 
– At most one L1 miss request per L1 access (no dirty victim 

write back) simplifies pipeline control 
– Simplifies coherence issues 
– Simplifies error recovery in L1 (can use just parity bits in L1 

and reload from L2 when parity error detected on L1 read) 
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Inclusion Policy 

•  Inclusive multilevel cache:  
–  Inner cache holds copies of data in outer cache 
–  External coherence snoop access need only 

check outer cache 
•  Exclusive multilevel caches: 

–  Inner cache may hold data not in outer cache 
–  Swap lines between inner/outer caches on miss 
–  Used in AMD Athlon with 64KB primary and 

256KB secondary cache 
Why choose one type or the other? 



February 9, 2010 CS152, Spring 2010 2/17/2009 24 

Itanium-2 On-Chip Caches 
(Intel/HP, 2002) 

Level 1: 16KB, 4-way s.a., 
64B line,  quad-port (2 
load+2 store), single cycle 
latency 

Level 2: 256KB, 4-way s.a, 
128B line, quad-port (4 
load or 4 store), five cycle 
latency 

Level 3: 3MB, 12-way s.a., 
128B line, single 32B port, 
twelve cycle latency 
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Power 7 On-Chip Caches [IBM 2009] 

25 
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