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Last time in Lecture 7 

•  3 C’s of cache misses: 
–  compulsory, capacity, conflict 

•  Average memory access time = 
hit time + miss rate * miss penalty 

•  To improve performance, reduce: 
– hit time 
– miss rate 
– and/or miss penalty 

•  Primary cache parameters: 
– Total cache capacity 
– Cache line size 
– Associativity 
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Multilevel Caches 
Problem: A memory cannot be large and fast 
Solution: Increasing sizes of cache at each level 

CPU L1$ L2$ DRAM 

Local miss rate = misses in cache / accesses to cache 

Global miss rate = misses in cache / CPU memory accesses 

Misses per instruction = misses in cache / number of instructions 
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Presence of L2 influences L1 design 

• Use smaller L1 if there is also L2 
– Trade increased L1 miss rate for reduced L1 hit time and 

reduced L1 miss penalty 
– Reduces average access energy 

• Use simpler write-through L1 with on-chip L2 
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip 
– At most one L1 miss request per L1 access (no dirty victim 

write back) simplifies pipeline control 
– Simplifies coherence issues 
– Simplifies error recovery in L1 (can use just parity bits in L1 

and reload from L2 when parity error detected on L1 read) 
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Inclusion Policy 

•  Inclusive multilevel cache:  
–  Inner cache holds copies of data in outer cache 
–  External coherence snoop access need only 

check outer cache 
•  Exclusive multilevel caches: 

–  Inner cache may hold data not in outer cache 
–  Swap lines between inner/outer caches on miss 
–  Used in AMD Athlon with 64KB primary and 

256KB secondary cache 
Why choose one type or the other? 
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Itanium-2 On-Chip Caches 
(Intel/HP, 2002) 

Level 1: 16KB, 4-way s.a., 
64B line,  quad-port (2 
load+2 store), single cycle 
latency 

Level 2: 256KB, 4-way s.a, 
128B line, quad-port (4 
load or 4 store), five cycle 
latency 

Level 3: 3MB, 12-way s.a., 
128B line, single 32B port, 
twelve cycle latency 
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Power 7 On-Chip Caches [IBM 2009] 

7 

32KB L1 I$/core 

32KB L1 D$/core 

3-cycle latency 

256KB Unified L2$/core 

8-cycle latency 

32MB Unified Shared L3$ 

Embedded DRAM 

25-cycle latency to local 
slice 
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Increasing Cache Bandwidth with 
Non-Blocking Caches 
•  Non-blocking cache or  lockup-free cache allow data 

cache to continue to supply cache hits during a miss 
–  requires Full/Empty bits on registers or out-of-order execution 

•  “hit under miss”  reduces the effective miss penalty by 
working during miss vs. ignoring CPU requests 

•  “hit under multiple miss” or “miss under miss”  may further 
lower the effective miss penalty by overlapping multiple 
misses 

–  Significantly increases the complexity of the cache controller as there can 
be multiple outstanding memory accesses, and can get miss to line with 
outstanding miss (secondary miss) 

–  Requires pipelined or banked memory system (otherwise cannot support 
multiple misses) 

–  Pentium Pro allows 4 outstanding memory misses 
–  (Cray X1E vector supercomputer allows 2,048 outstanding memory 

misses) 
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Value of Hit Under Miss for SPEC  
(old data) 

•  Floating-point programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26 
•  Integer programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19 
•  8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92 

Hit Under i Misses
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CS152 Administrivia 



February 11, 2010 CS152, Spring 2010 11 

Prefetching 

•  Speculate on future instruction and data 
accesses and fetch them into cache(s) 
–  Instruction accesses easier to predict than data 

accesses 

•  Varieties of prefetching 
–  Hardware prefetching 
–  Software prefetching 
–  Mixed schemes 

•  What types of misses does 
prefetching affect? 
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Issues in Prefetching 

•  Usefulness – should produce hits 
•  Timeliness – not late and not too early 
•  Cache and bandwidth pollution 

L1 Data 

L1 
Instruction 

Unified L2 
Cache 

RF 

CPU 

Prefetched data 
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Hardware Instruction Prefetching 
Instruction prefetch in Alpha AXP 21064 

–  Fetch two blocks on a miss; the requested block (i) and the next 
consecutive block (i+1) 

–  Requested block placed in cache, and next block in instruction stream 
buffer 

–  If miss in cache but hit in stream buffer, move stream buffer block into 
cache and prefetch next block (i+2) 

L1 
Instruction 

Unified L2 
Cache 

RF 

CPU 

Stream 
Buffer 

Prefetched 
instruction block Req 

 block 

Req 
 block 
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Hardware Data Prefetching 
•  Prefetch-on-miss: 

– Prefetch b + 1 upon miss on b 

•  One Block Lookahead (OBL) scheme  
– Initiate prefetch for block b + 1 when block b is accessed 
– Why is this different from doubling block size? 
– Can extend to N-block lookahead 

•  Strided prefetch 
– If observe sequence of accesses to block b, b+N, b+2N, 

then prefetch b+3N etc. 

Example: IBM Power 5 [2003] supports eight independent 
streams of strided prefetch per processor, prefetching 12 lines 
ahead of current access 
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Software Prefetching 

  for(i=0; i < N; i++) { 
    prefetch( &a[i + 1] ); 
    prefetch( &b[i + 1] ); 
    SUM = SUM + a[i] * b[i]; 
 } 

What property do we require of the cache for 
prefetching to work ? 
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Software Prefetching Issues 

•  Timing is the biggest issue, not predictability 
–  If you prefetch very close to when the data is required, you 

might be too late 
–  Prefetch too early, cause pollution 
–  Estimate how long it will take for the data to come into L1, so 

we can set P appropriately 
–   Why is this hard to do? 

  for(i=0; i < N; i++) { 
    prefetch( &a[i + P] ); 
    prefetch( &b[i + P] ); 
    SUM = SUM + a[i] * b[i]; 
 } 

Must consider cost of prefetch instructions 
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Compiler Optimizations 

•  Restructuring code affects the data block 
access sequence  
–  Group data accesses together to improve spatial locality 
–  Re-order data accesses to improve temporal locality 

•  Prevent data from entering the cache 
–  Useful for variables that will only be accessed once before being 

replaced 
–  Needs mechanism for software to tell hardware not to cache 

data (“no-allocate” instruction hints or page table bits) 

•  Kill data that will never be used again 
–  Streaming data exploits spatial locality but not temporal locality 
–  Replace into dead cache locations 
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Loop Interchange 

  for(j=0; j < N; j++) { 
    for(i=0; i < M; i++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

  for(i=0; i < M; i++) { 
    for(j=0; j < N; j++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

What type of locality does this improve? 
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Loop Fusion 
for(i=0; i < N; i++) 
    a[i] = b[i] * c[i]; 

for(i=0; i < N; i++) 
     d[i] = a[i] * c[i]; 

  for(i=0; i < N; i++) 
{ 
       a[i] = b[i] * c[i];  
       d[i] = a[i] * c[i]; 

  } 

What type of locality does this improve? 
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 for(i=0; i < N; i++) 
    for(j=0; j < N; j++) { 
       r = 0; 
       for(k=0; k < N; k++)   
         r = r + y[i][k] * z[k][j]; 
       x[i][j] = r; 
    } 

Matrix Multiply, Naïve Code 

Not touched Old access New access 

x j 

i 

y k 

i 

z j 

k 



February 11, 2010 CS152, Spring 2010 21 

 for(jj=0; jj < N; jj=jj+B) 
   for(kk=0; kk < N; kk=kk+B) 
      for(i=0; i < N; i++) 
          for(j=jj; j < min(jj+B,N); j++) { 
             r = 0; 
             for(k=kk; k < min(kk+B,N); k++)  
                r = r + y[i][k] * z[k][j]; 
             x[i][j] = x[i][j] + r; 
          } 

Matrix Multiply with Cache Tiling 

What type of locality does this improve? 
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