
February 11, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 8 - Memory Hierarchy-III

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 11, 2010 CS152, Spring 2010 2

Last time in Lecture 7

•  3 C’s of cache misses:
–  compulsory, capacity, conflict

•  Average memory access time =
hit time + miss rate * miss penalty

•  To improve performance, reduce:
– hit time
– miss rate
– and/or miss penalty

•  Primary cache parameters:
– Total cache capacity
– Cache line size
– Associativity

February 11, 2010 CS152, Spring 2010 3

Multilevel Caches
Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

February 11, 2010 CS152, Spring 2010 4

Presence of L2 influences L1 design

• Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time and

reduced L1 miss penalty
– Reduces average access energy

• Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim

write back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1

and reload from L2 when parity error detected on L1 read)

February 11, 2010 CS152, Spring 2010 5

Inclusion Policy

•  Inclusive multilevel cache:
–  Inner cache holds copies of data in outer cache
–  External coherence snoop access need only

check outer cache
•  Exclusive multilevel caches:

–  Inner cache may hold data not in outer cache
–  Swap lines between inner/outer caches on miss
–  Used in AMD Athlon with 64KB primary and

256KB secondary cache
Why choose one type or the other?

February 11, 2010 CS152, Spring 2010 2/17/2009 6

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Level 1: 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single cycle
latency

Level 2: 256KB, 4-way s.a,
128B line, quad-port (4
load or 4 store), five cycle
latency

Level 3: 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency

February 11, 2010 CS152, Spring 2010

Power 7 On-Chip Caches [IBM 2009]

7

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM

25-cycle latency to local
slice

February 11, 2010 CS152, Spring 2010 8

Increasing Cache Bandwidth with
Non-Blocking Caches
•  Non-blocking cache or lockup-free cache allow data

cache to continue to supply cache hits during a miss
–  requires Full/Empty bits on registers or out-of-order execution

•  “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

•  “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

–  Significantly increases the complexity of the cache controller as there can
be multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

–  Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

–  Pentium Pro allows 4 outstanding memory misses
–  (Cray X1E vector supercomputer allows 2,048 outstanding memory

misses)

February 11, 2010 CS152, Spring 2010 9

Value of Hit Under Miss for SPEC
(old data)

•  Floating-point programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
•  Integer programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
•  8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Hit Under i Misses

A
vg

.
M

em
.

A
cc

es
s

Ti
m

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

February 11, 2010 CS152, Spring 2010 10

CS152 Administrivia

February 11, 2010 CS152, Spring 2010 11

Prefetching

•  Speculate on future instruction and data
accesses and fetch them into cache(s)
–  Instruction accesses easier to predict than data

accesses

•  Varieties of prefetching
–  Hardware prefetching
–  Software prefetching
–  Mixed schemes

•  What types of misses does
prefetching affect?

February 11, 2010 CS152, Spring 2010 12

Issues in Prefetching

•  Usefulness – should produce hits
•  Timeliness – not late and not too early
•  Cache and bandwidth pollution

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

February 11, 2010 CS152, Spring 2010 13

Hardware Instruction Prefetching
Instruction prefetch in Alpha AXP 21064

–  Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

–  Requested block placed in cache, and next block in instruction stream
buffer

–  If miss in cache but hit in stream buffer, move stream buffer block into
cache and prefetch next block (i+2)

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction block Req

 block

Req
 block

February 11, 2010 CS152, Spring 2010 14

Hardware Data Prefetching
•  Prefetch-on-miss:

– Prefetch b + 1 upon miss on b

•  One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed
– Why is this different from doubling block size?
– Can extend to N-block lookahead

•  Strided prefetch
– If observe sequence of accesses to block b, b+N, b+2N,

then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

February 11, 2010 CS152, Spring 2010 15

Software Prefetching

 for(i=0; i < N; i++) {
 prefetch(&a[i + 1]);
 prefetch(&b[i + 1]);
 SUM = SUM + a[i] * b[i];
 }

What property do we require of the cache for
prefetching to work ?

February 11, 2010 CS152, Spring 2010 16

Software Prefetching Issues

•  Timing is the biggest issue, not predictability
–  If you prefetch very close to when the data is required, you

might be too late
–  Prefetch too early, cause pollution
–  Estimate how long it will take for the data to come into L1, so

we can set P appropriately
–  Why is this hard to do?

 for(i=0; i < N; i++) {
 prefetch(&a[i + P]);
 prefetch(&b[i + P]);
 SUM = SUM + a[i] * b[i];
 }

Must consider cost of prefetch instructions

February 11, 2010 CS152, Spring 2010 17

Compiler Optimizations

•  Restructuring code affects the data block
access sequence
–  Group data accesses together to improve spatial locality
–  Re-order data accesses to improve temporal locality

•  Prevent data from entering the cache
–  Useful for variables that will only be accessed once before being

replaced
–  Needs mechanism for software to tell hardware not to cache

data (“no-allocate” instruction hints or page table bits)

•  Kill data that will never be used again
–  Streaming data exploits spatial locality but not temporal locality
–  Replace into dead cache locations

February 11, 2010 CS152, Spring 2010 18

Loop Interchange

 for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

What type of locality does this improve?

February 11, 2010 CS152, Spring 2010 19

Loop Fusion
for(i=0; i < N; i++)
 a[i] = b[i] * c[i];

for(i=0; i < N; i++)
 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)
{
 a[i] = b[i] * c[i];
 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

February 11, 2010 CS152, Spring 2010 20

 for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

Matrix Multiply, Naïve Code

Not touched Old access New access

x j

i

y k

i

z j

k

February 11, 2010 CS152, Spring 2010 21

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling

What type of locality does this improve?

y k

i

z j

k

x j

i

February 11, 2010 CS152, Spring 2010 22

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

