CS 152 Computer Architecture and
Engineering

Lecture 8 - Memory Hierarchy-lll

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

February 11, 2010 CS152, Spring 2010

Last time In Lecture 7

3 C’s of cache misses:
— compulsory, capacity, conflict
* Average memory access time =
hit time + miss rate * miss penalty

* To improve performance, reduce:
— hit time
— miss rate
—and/or miss penalty

* Primary cache parameters:
— Total cache capacity
— Cache line size
— Associativity

February 11, 2010 CS152, Spring 2010 2

Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU [—L1$}— L2¢ —| DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

February 11, 2010 CS152, Spring 2010 3

Presence of L2 influences L1 design

 Use smaller L1 if there is also L2

— Trade increased L1 miss rate for reduced L1 hit time and
reduced L1 miss penalty

— Reduces average access energy

» Use simpler write-through L1 with on-chip L2

— Write-back L2 cache absorbs write traffic, doesn’t go off-chip

— At most one L1 miss request per L1 access (no dirty victim
write back) simplifies pipeline control

— Simplifies coherence issues

— Simplifies error recovery in L1 (can use just parity bits in L1
and reload from L2 when parity error detected on L1 read)

February 11, 2010 CS152, Spring 2010 4

Inclusion Policy

* |nclusive multilevel cache:

— Inner cache holds copies of data in outer cache

— External coherence snoop access need only
check outer cache

* Exclusive multilevel caches:
— Inner cache may hold data not in outer cache

— Swap lines between inner/outer caches on miss

— Used in AMD Athlon with 64KB primary and
256KB secondary cache

Why choose one type or the other?

February 11, 2010 CS152, Spring 2010

Itanium-2 On-Chip Caches

(Intel/HP, 2002)

21.6 mm

] e
s Point Uit i

Pl ool 8

i B 2 ke d
e s riteger [] M
| ; Datapath | pf Mgdia
- .

19.5mm

Level 1: 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single cycle
latency

Level 2: 256KB, 4-way s.a,
128B line, quad-port (4
load or 4 store), five cycle
latency

Level 3: 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency

2010 6

Power 7 On-Chip Caches [IBM 2009]

32KB L1 I$/core
32KB L1 D$%/core

3-cycle latency

256KB Unified L2%/core

8-cycle latency

32MB Unified Shared L3$%
Embedded DRAM

25-cycle latency to local
slice

-
T

* :.:.'i_'. o

February 11, 2010 CS152, Spring 2010 7

Increasing Cache Bandwidth with
Non-Blocking Caches

* Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss
— requires Full/Empty bits on registers or out-of-order execution

* “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

* “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

— Significantly increases the complexity of the cache controller as there can

be multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

— Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

— Pentium Pro allows 4 outstanding memory misses

— (Cray X1E vector supercomputer allows 2,048 outstanding memory
misses)

February 11, 2010 CS152, Spring 2010 8

Value of Hit Under Miss for SPEC
(old data) “Hitundern Misses”

1.8+
216 -

=

81-4 T L] 0->1

81.2 0->1
<

E' 1 1'>2
0.8 2->64
%6 Base
0.4

0.2

o
espresso
compress
tomcatv
swm256
doduc
su2cor
nasa’
spice2g6
ora

Integer Floating Point
* Floating-point programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

* Integer programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
« 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

February 11, 2010 CS152, Spring 2010 9

CS152 Administrivia

February 11, 2010 CS152, Spring 2010 10

Prefetching

« Speculate on future instruction and data
accesses and fetch them into cache(s)

— Instruction accesses easier to predict than data
accesses

» Varieties of prefetching
— Hardware prefetching
— Software prefetching
— Mixed schemes

» What types of misses does
prefetching affect?

February 11, 2010 CS152, Spring 2010 11

Issues in Prefetching

» Usefulness — should produce hits
* Timeliness — not late and not too early
« Cache and bandwidth pollution

Inst:-u1ction
CPU

Unified L2
t1l Cache

RF | «=» L1 Data

Prefetched data

February 11, 2010 CS152, Spring 2010 12

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

— Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

— Requested block placed in cache, and next block in instruction stream
buffer

— If miss in cache but hit in stream buffer, move stream buffer block into
cache and prefetch next block (i+2)

Prefetched

Req instruction block
block Stream

Buffer

CPU

Unified L2
11] | L1 ‘“l

Instruction | Req Cache
RF block

February 11, 2010 CS152, Spring 2010 13

Hardware Data Prefetching

* Prefetch-on-miss:
—Prefetch b + 1 upon misson b

* One Block Lookahead (OBL) scheme

—Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
—Can extend to N-block lookahead

« Strided prefetch

—If observe sequence of accesses to block b, b+N, b+2N,
then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

February 11, 2010 CS152, Spring 2010 14

Software Prefetching

for(i=0; 1 < N; i++) {
prefetch(&a[i + 1]);
prefetch(&b[i + 1]),
SUM = SUM + a[i] * b[1i];

What property do we require of the cache for
prefetching to work ?

February 11, 2010 CS152, Spring 2010 15

Software Prefetching Issues

« Timing is the biggest issue, not predictability

— If you prefetch very close to when the data is required, you
might be too late

— Prefetch too early, cause pollution

— Estimate how long it will take for the data to come into L1, so
we can set P appropriately

— Why is this hard to do?

for(i=0; 1 < N; 1i++) {
prefetch(&af[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];
}

Must consider cost of prefetch instructions

February 11, 2010 CS152, Spring 2010 16

Compiler Optimizations

* Restructuring code affects the data block
dCCesSs sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

* Prevent data from entering the cache

— Useful for variables that will only be accessed once before being
replaced

— Needs mechanism for software to tell hardware not to cache
data (“no-allocate” instruction hints or page table bits)

 Kill data that will never be used again

— Streaming data exploits spatial locality but not temporal locality
— Replace into dead cache locations

February 11, 2010 CS152, Spring 2010 17

Loop Interchange

for(3j=0; j < N; j++) {
for(i=0; i < M; i++) {
\ x[1]1[3] = 2 * x[i][]3];

.

for(i=0; i < M; i++) {
for(3j=0; j < N; j++) {
\ x[1]1[3] = 2 * x[1][3]]~

What type of locality does this improve?

February 11, 2010 CS152, Spring 2010 18

Loop Fusion

for(i=0; 1 < N; i++)
af[i] = b[i] * c[i];

for(1i=0; 1 < N; i++)

d[i] = a[i1] * c[i];

.

for(i=0; 1 < N; i++)

{

b[i] * c[i];
afi] * c[1i];

af[i]
d[i]

}

What type of locality does this improve?

February 11, 2010 CS152, Spring 2010 19

Matrix Multiply, Naive Code

for(i=0; i < N; i++) z
for(j=0; j < N; j++) {
r =0;
for (k=0; k < N; k++) k
r=r + yl[i][k] * z[k][]J]’
x[1] []J] = x;
}
Y k X
1 1
Not touched Old access Bl New access

February 11, 2010 CS152, Spring 2010 20

Matrix Multiply with Cache Tiling

for(jj=0; jj < N; jj=jj+B)
for (kk=0; kk < N; kk=kk+B) -
for (i=0; i < N; i++)
for (3=33; J < min(33+B,N); J++) {
r = 0;
for (k=kk; k < min (kk+B,N); k++) K
r=r+ y[il[k] * z[k][j];

x[i][3] = x[i][3] + r;

Y k X J

What type of locality does this improve?

February 11, 2010 CS152, Spring 2010 21

Acknowledgements

* These slides contain material developed and
copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

« MIT material derived from course 6.823
« UCB material derived from course CS252

February 11, 2010 CS152, Spring 2010 22

