
February 18, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 9 - Address Translation

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 18, 2010 CS152, Spring 2010 2

Last time in Lecture 8
•  Multi-level cache hierarchies reduce miss penalty

–  3 levels common in modern systems
–  Inclusive versus exclusive caching policy
– Can change design tradeoffs of L1 cache if known to have L2

•  Non-blocking caches
–  Allow hits and maybe misses while misses in flight

•  Prefetching: retrieve data from memory before
CPU request

–  Prefetching can waste bandwidth and cause cache pollution
–  Software vs hardware prefetching

•  Software memory hierarchy optimizations
–  Loop interchange, loop fusion, cache tiling

February 18, 2010 CS152, Spring 2010 3

Memory Management
•  From early absolute addressing schemes, to modern

virtual memory systems with support for virtual
machine monitors

•  Can separate into orthogonal functions:
–  Translation (mapping of virtual address to physical address)
–  Protection (permission to access word in memory)
–  Virtual memory (transparent extension of memory space

using slower disk storage)

•  But most modern systems provide support for all the
above functions with a single page-based system

February 18, 2010 CS152, Spring 2010 4

Absolute Addresses

•  Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

•  Addresses in a program depended upon where the
program was to be loaded in memory

•  But it was more convenient for programmers to write
location-independent subroutines

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

February 18, 2010 CS152, Spring 2010 5

Dynamic Address Translation

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped.

 How?⇒ multiprogramming

Location-independent programs
Programming and storage management ease

 ⇒ need for a base register

Protection
Independent programs should not affect
each other inadvertently

 ⇒ need for a bound register

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

February 18, 2010 CS152, Spring 2010 6

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register ≤

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
Address Effective

Address

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Base Physical Address

Segment Length

February 18, 2010 CS152, Spring 2010 7

Separate Areas for Program and Data

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Load X

Program
Address
Space

Ph
ys

ic
al

 M
em

or
y

data
segment

Data Bound
Register

Effective Addr
Register

Data Base
Register

≤

+

Bounds
Violation?

Program Bound
Register

Program
Counter

Program Base
Register

≤

+

Bounds
Violation?

program
segment

February 18, 2010 CS152, Spring 2010 8

Memory Fragmentation

 As users come and go, the storage is “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

February 18, 2010 CS152, Spring 2010 9

•  Processor-generated address can be split into:

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

•  A page table contains the physical address of the base of
each page:

Physical
Memory

February 18, 2010 CS152, Spring 2010 10

Private Address Space per User

•  Each user has a page table
•  Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

February 18, 2010 CS152, Spring 2010 11

Where Should Page Tables Reside?
•  Space required by the page tables (PT) is

proportional to the address space, number of
users, ...

 ⇒ Space requirement is large
 ⇒ Too expensive to keep in registers

•  Idea: Keep PTs in the main memory
–  needs one reference to retrieve the page base address

and another to access the data word
 ⇒ doubles the number of memory references!

February 18, 2010 CS152, Spring 2010 12

Page Tables in Physical Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

Ph
ys

ic
al

 M
em

or
y

February 18, 2010 CS152, Spring 2010 13

CS152 Administrivia

February 18, 2010 CS152, Spring 2010 14

A Problem in the Early Sixties

•  There were many applications whose data
could not fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but

still required the whole program to be resident in
the main memory

•  Programmers moved the data back and forth
from the secondary store by overlaying it
repeatedly on the primary store

 tricky programming!

February 18, 2010 CS152, Spring 2010 15

Manual Overlays

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

•  Assume an instruction can address all
the storage on the drum

•  Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required
–  Difficult, error-prone!

•  Method 2: automatic initiation of I/O
transfers by software address translation
–  Brooker’s interpretive coding, 1960
–  Inefficient!

Not just an ancient black art, e.g., IBM Cell microprocessor
using in Playstation-3 has explicitly managed local store!

February 18, 2010 CS152, Spring 2010 16

Demand Paging in Atlas (1962)

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
Memory User sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into
the primary storage
whenever it is (implicitly)
demanded by the
processor.”

 Tom Kilburn

Primary memory as a cache
for secondary memory

February 18, 2010 CS152, Spring 2010 17

Hardware Organization of Atlas

Initial
Address
Decode

16 ROM pages
0.4 ~1 µsec

2 subsidiary pages
 1.4 µsec

Main
 32 pages
 1.4 µsec

Drum (4)
 192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR)
per page frame

Compare the effective page address against all 32 PARs
 match ⇒ normal access
 no match ⇒ page fault
 save the state of the partially executed
 instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

February 18, 2010 CS152, Spring 2010 18

Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated
– The Page Address Register (PAR) is updated
– If no free page is left, a page is selected to be

replaced (based on usage)
– The replaced page is written on the drum

» to minimize drum latency effect, the first empty
page on the drum was selected

– The page table is updated to point to the new
location of the page on the drum

February 18, 2010 CS152, Spring 2010 19

Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
 in hardware mostly in software

primary
memory

CPU

February 18, 2010 CS152, Spring 2010 20

Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

 page table ≡ name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PA
Mapping

February 18, 2010 CS152, Spring 2010 21

Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

•  Page Table Entry (PTE)
contains:
–  A bit to indicate if a page exists
–  PPN (physical page number) for

a memory-resident page
–  DPN (disk page number) for a

page on the disk
–  Status bits for protection and

usage
•  OS sets the Page Table

Base Register whenever
active user process
changes

February 18, 2010 CS152, Spring 2010 22

Size of Linear Page Table
With 32-bit addresses, 4-KB pages & 4-byte PTEs:

⇒  220 PTEs, i.e, 4 MB page table per user
⇒  4 GB of swap needed to back up full virtual address

 space

Larger pages?
•  Internal fragmentation (Not all memory in page is used)
•  Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
•  Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?

February 18, 2010 CS152, Spring 2010 23

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

or
y

February 18, 2010 CS152, Spring 2010 24

Address Translation & Protection

•  Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

February 18, 2010 CS152, Spring 2010 25

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single Cycle Translation
 TLB miss ⇒ Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

February 18, 2010 CS152, Spring 2010 26

TLB Designs
•  Typically 32-128 entries, usually fully associative

–  Each entry maps a large page, hence less spatial locality across pages
 more likely that two entries conflict

–  Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative
–  Larger systems sometimes have multi-level (L1 and L2) TLBs

•  Random or FIFO replacement policy

•  No process information in TLB?

•  TLB Reach: Size of largest virtual address space that
can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = ___? 64 entries * 4 KB = 256 KB (if contiguous)

February 18, 2010 CS152, Spring 2010 27

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

February 18, 2010 CS152, Spring 2010 28

Hierarchical Page Table Walk:
SPARC v8

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0
Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

February 18, 2010 CS152, Spring 2010 29

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address

(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT Where?

February 18, 2010 CS152, Spring 2010 30

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

