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Last time in Lecture 8 
•  Multi-level cache hierarchies reduce miss penalty 

–  3 levels common in modern systems 
–  Inclusive versus exclusive caching policy 
– Can change design tradeoffs of L1 cache if known to have L2 

•  Non-blocking caches 
–  Allow hits and maybe misses while misses in flight 

•  Prefetching: retrieve data from memory before 
CPU request 

–  Prefetching can waste bandwidth and cause cache pollution 
–  Software vs hardware prefetching 

•  Software memory hierarchy optimizations 
–  Loop interchange, loop fusion, cache tiling 
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Memory Management 
•  From early absolute addressing schemes, to modern 

virtual memory systems with support for virtual 
machine monitors 

•  Can separate into orthogonal functions: 
–  Translation (mapping of virtual address to physical address) 
–  Protection (permission to access word in memory) 
–  Virtual memory (transparent extension of memory space 

using slower disk storage) 

•  But most modern systems provide support for all the 
above functions with a single page-based system 
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Absolute Addresses 

•  Only one program ran at a time, with unrestricted 
access to entire machine (RAM + I/O devices) 

•  Addresses in a program depended upon where the 
program was to be loaded in memory 

•  But it was more convenient for programmers to write 
location-independent subroutines 

EDSAC, early 50’s 

How could location independence be achieved? 

Linker and/or loader modify addresses of subroutines 
and callers when building a program memory image 
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Dynamic Address Translation 

Motivation 
In the early machines, I/O operations were slow 
and each word transferred involved the CPU  

Higher throughput if CPU and I/O of 2 or more 
programs were overlapped. 

 How?⇒ multiprogramming 

Location-independent programs 
Programming and storage management ease   

 ⇒ need for a base register 

Protection 
Independent programs should not affect 
each other inadvertently 

 ⇒ need for a bound register  
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Simple Base and Bound Translation 

Load X 

Program 
Address 
Space 

Bound 
Register ≤

Bounds 
Violation? 
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Physical 
Address Effective 

Address 

Base and bounds registers are visible/accessible only 
when processor is running in the supervisor mode 

Base Physical Address 

Segment Length 
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Separate Areas for Program and Data 

What is an advantage of this separation? 
(Scheme used on all Cray vector supercomputers prior to X1, 2002) 
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Memory Fragmentation 

  As users come and go, the storage is “fragmented”.  
  Therefore, at some stage programs have to be moved 
  around to compact the storage.  

OS 
Space 
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24K 

24K 

32K 

24K 

user 1 

user 2 

user 3 
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user 2 

user 3 

user 5 

user 4 
8K 

Users 4 & 5  
arrive 

Users 2 & 5 
leave 

OS 
Space 
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24K 

user 1 
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free 
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•  Processor-generated address can be split into: 

Paged Memory Systems 

Page tables make it possible to store the 
pages of a program non-contiguously. 

0 
1 
2 
3 

0 
1 
2 
3 

Address Space 
of User-1 

Page Table  
of User-1 

1 
0 

2 

3 

page number      offset 

•  A page table contains the physical address of the base of 
each page:

Physical 
Memory 
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Private Address Space per User 

•  Each user has a page table  
•  Page table contains an entry for each user page 

VA1 User 1 

Page Table  

VA1 User 2 

Page Table  

VA1 User 3 

Page Table  
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Where Should Page Tables Reside? 
•  Space required by the page tables (PT) is 

proportional to the address space, number of 
users, ... 

      ⇒  Space requirement is large  
     ⇒ Too expensive to keep in registers 

•  Idea: Keep PTs in the main memory 
–  needs one reference to retrieve the page base address 

and another to access the data word 
   ⇒ doubles the number of memory references! 
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Page Tables in Physical Memory 

VA1 

User 1 Virtual 
Address Space 

User 2 Virtual 
Address Space 

PT 
User 
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CS152 Administrivia 
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A Problem in the Early Sixties 

•  There were many applications whose data 
could not fit in the main memory, e.g., payroll 
– Paged memory system reduced fragmentation but 

still required the whole program to be resident in 
the main memory 

•  Programmers moved the data back and forth 
from the secondary store by overlaying it 
repeatedly on the primary store 

    
     tricky programming! 
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Manual Overlays  

Ferranti Mercury 
1956 

40k bits 
main 

640k bits 
drum 

Central Store 

•  Assume an instruction can address all 
the storage on the drum 

•  Method 1: programmer keeps track of 
addresses in the main memory and 
initiates an I/O transfer when required 
–  Difficult, error-prone! 

•  Method 2: automatic initiation of I/O 
transfers by software address translation 
–  Brooker’s interpretive coding, 1960 
–  Inefficient! 

Not just an ancient black art, e.g., IBM Cell microprocessor 
using in Playstation-3 has explicitly managed local store! 
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Demand Paging in Atlas (1962) 

Secondary 
(Drum) 

32x6 pages 

Primary 
32 Pages 

512 words/page 

Central  
Memory User sees 32 x 6 x 512 words 

of storage 

“A page from secondary 
storage is brought into 
the primary storage 
whenever it is (implicitly) 
demanded by the 
processor.” 

  Tom Kilburn 

Primary memory as a cache 
for secondary memory 
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Hardware Organization of Atlas  

Initial 
Address 
Decode 

16 ROM pages 
0.4 ~1 µsec 

2 subsidiary pages 
       1.4 µsec 

Main 
  32 pages 
  1.4 µsec 

Drum (4) 
   192 pages 


8 Tape decks 
88 sec/word 

48-bit words 
512-word pages 

1 Page Address 
Register (PAR) 
per page frame 

Compare the effective page address against all 32 PARs 
 match   ⇒ normal access 
 no match  ⇒ page fault 
        save the state of the partially executed 
        instruction 

Effective 
Address 

system code 
(not swapped) 

system data 
(not swapped) 

0 

31 

PARs 

<effective PN , status> 
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Atlas Demand Paging Scheme 

• On a page fault:  
– Input transfer into a free page is initiated 
– The Page Address Register (PAR) is updated 
– If no free page is left, a page is selected to be 

replaced (based on usage) 
– The replaced page is written on the drum 

» to minimize drum latency effect, the first empty 
page on the drum was selected 

– The page table is updated to point to the new 
location of the page on the drum 
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Caching vs. Demand Paging 

CPU cache 
primary 
memory 

secondary 
memory 

Caching           Demand paging 
cache entry    page frame 
cache block (~32 bytes)  page (~4K bytes) 
cache miss rate (1% to 20%)  page miss rate (<0.001%) 
cache hit (~1 cycle)   page hit (~100 cycles) 
cache miss (~100 cycles)  page miss (~5M cycles) 
a miss is handled            a miss is handled  
     in hardware                  mostly in software 

primary 
memory 

CPU 
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Modern Virtual Memory Systems 
 Illusion of a large, private, uniform store 

Protection & Privacy 
several users, each with their private 
address space and one or more 
shared address spaces 

  page table ≡ name space 

Demand Paging 
Provides the ability to run programs 
larger than the primary memory 

Hides differences in machine 
configurations 

   
The price is address translation on  
each memory reference 

OS 

useri 

Primary 
Memory 

Swapping 
Store 

VA PA 
Mapping 
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Linear Page Table 

VPN Offset 
Virtual address 

PT Base Register 

VPN 

Data word 

Data Pages 

Offset 

PPN 
PPN 

DPN 
PPN 

PPN 
PPN 

Page Table 

DPN 

PPN 

DPN 
DPN 

DPN 
PPN 

•  Page Table Entry (PTE) 
contains: 
–  A bit to indicate if a page exists 
–  PPN (physical page number) for 

a memory-resident page 
–  DPN (disk page number) for a 

page on the disk 
–  Status bits for protection and 

usage 
•  OS sets the Page Table 

Base Register whenever 
active user process 
changes 
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Size of Linear Page Table 
With 32-bit addresses, 4-KB pages & 4-byte PTEs: 

⇒   220 PTEs, i.e, 4 MB page table per user 
⇒  4 GB of swap needed to back up full virtual address 

   space 

Larger pages? 
•  Internal fragmentation (Not all memory in page is used) 
•  Larger page fault penalty (more time to read from disk) 

What about 64-bit virtual address space??? 
•  Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

                          What is the “saving grace” ?  
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Hierarchical Page Table 

Level 1  
Page Table 

Level 2 
Page Tables  

Data Pages 

page in primary memory  
page in secondary memory 

Root of the Current 
Page Table 

p1 

offset 

p2 

Virtual Address 

(Processor 
Register) 

PTE of a nonexistent page 

p1          p2          offset 
0 11 12 21 22 31 

10-bit 
L1 index 
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Address Translation & Protection 

•  Every instruction and data access needs address  
  translation and protection checks 

A good VM design needs to be fast (~ one cycle) and 
space efficient 

Physical Address 

Virtual Address 

Address 
Translation 

Virtual Page No. (VPN) offset 

Physical Page No. (PPN) offset 

Protection 
Check 

Exception? 

Kernel/User Mode 

Read/Write 
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Translation Lookaside Buffers 

Address translation is very expensive! 
In a two-level page table, each reference 
becomes several memory accesses 

Solution: Cache translations in TLB 
  TLB hit  ⇒ Single Cycle Translation 
       TLB miss  ⇒ Page-Table Walk to refill  

VPN          offset 

V R W D    tag        PPN 

physical address PPN       offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 
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TLB Designs 
•  Typically 32-128 entries, usually fully associative 

–  Each entry maps a large page, hence less spatial locality across pages 
 more likely that two entries conflict 

–  Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative 
–  Larger systems sometimes have multi-level (L1 and L2) TLBs 

•  Random or FIFO replacement policy 

•  No process information in TLB? 

•  TLB Reach: Size of largest virtual address space that 
can be simultaneously mapped by TLB 

Example: 64 TLB entries, 4KB pages, one page per entry 

TLB Reach = _____________________________________________? 64 entries * 4 KB = 256 KB (if contiguous) 
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Handling a TLB Miss 

Software (MIPS, Alpha) 
TLB miss causes an exception and the operating system 
walks the page tables and reloads TLB. A privileged 
“untranslated”  addressing mode used for walk 

Hardware (SPARC v8, x86, PowerPC) 
A memory management unit (MMU) walks the page 
tables and reloads the TLB 

If a missing (data or PT) page is encountered during the 
TLB reloading, MMU gives up and signals a Page-Fault 
exception for the original instruction   
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Hierarchical Page Table Walk: 
SPARC v8 

31          11          
0 

Virtual Address Index 1      Index 2      Index 3       Offset 

31         23            17             11             0 
Context 
Table 
Register 

Context 
Register 

root ptr 

PTP 
PTP 

PTE 

Context Table 

L1 Table 

L2 Table 
L3 Table 

Physical Address PPN            Offset 

MMU does this table walk in hardware on a TLB miss 
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Address Translation: 
putting it all together 

Virtual Address 

TLB 
Lookup 

Page Table 
Walk 

Update TLB Page Fault 
(OS loads page) 

Protection 
Check 

Physical 
Address 

(to cache) 

miss hit 

      the  page is  
∉ memory           ∈ memory denied permitted 

Protection 
Fault 

hardware 
hardware or software 
software 

SEGFAULT Where? 
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