
February 23, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 10 - Virtual Memory

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

February 23, 2010 CS152, Spring 2010

Last time in Lecture 9
•  Protection and translation required for

multiprogramming
– Base and bounds, early simple scheme

•  Page-based translation and protection avoids need
for memory compaction, easy allocation by OS

– But need to indirect in large page table on every access

•  Address spaces accessed sparsely
– Can use multi-level page table to hold translation/protection

information

•  Address space access with locality
– Can use “translation lookaside buffer” (TLB) to cache address

translations (sometimes known as address translation cache)
– Still have to walk page tables on TLB miss, can be hardware or

software talk

•  Virtual memory uses DRAM as a “cache” of disk
memory, allows very cheap main memory

February 23, 2010 CS152, Spring 2010

Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

 page table ! name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PA mapping
TLB

February 23, 2010 CS152, Spring 2010

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

February 23, 2010 CS152, Spring 2010

Address Translation & Protection

• !Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

February 23, 2010 CS152, Spring 2010

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit " Single Cycle Translation
 TLB miss " Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

February 23, 2010 CS152, Spring 2010

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

February 23, 2010 CS152, Spring 2010

Translation for Page Tables
•  Can references to page tables cause TLB misses?
•  Can this go on forever?

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

February 23, 2010 CS152, Spring 2010

Variable-Sized Page Support

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

February 23, 2010 CS152, Spring 2010

Variable-Size Page TLB

Some systems support multiple page sizes.

VPN offset

physical address PPN offset

virtual address

hit?

V R W D Tag PPN L

February 23, 2010 CS152, Spring 2010

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address

(to cache)

miss hit

 the page is
memory $ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

February 23, 2010 CS152, Spring 2010

Address Translation in CPU Pipeline

• Software handlers need restartable exception on page fault or
protection violation

• Handling a TLB miss needs a hardware or software mechanism to
refill TLB

• Need mechanisms to cope with the additional latency of a TLB:
–  slow down the clock
–  pipeline the TLB and cache access
–  virtual address caches
–  parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

February 23, 2010 CS152, Spring 2010

Virtual Address Caches

•  one-step process in case of a hit (+)
•  cache needs to be flushed on a context switch unless address

space identifiers (ASIDs) included in tags (-)
•  aliasing problems due to the sharing of pages (-)
•  maintaining cache coherence (-) (see later in course)

CPU Physical
Cache

TLB Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM) Virtual
Cache

PA
TLB

Primary
Memory

February 23, 2010 CS152, Spring 2010

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache

Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

February 23, 2010 CS152, Spring 2010

CS152 Administrivia
•  Quiz 2: Tuesday March 3. Covers Lectures 6-8, PS2,

and Lab 2

February 23, 2010 CS152, Spring 2010

Concurrent Access to TLB & Cache

Index L is available without consulting the TLB
" cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L + b = k, L + b < k, L + b > k

 VPN L b

TLB Direct-map Cache
2L

 blocks
2b-byte block

 PPN Page Offset

=
hit?

Data Physical Tag
Tag

VA

PA

Virtual
Index

k

February 23, 2010 CS152, Spring 2010

Virtual-Index Physical-Tag Caches:
Associative Organization

How does this scheme scale to larger caches?

 VPN a L = k-b b

TLB Direct-map
2L

 blocks

 PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L

 blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

February 23, 2010 CS152, Spring 2010

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

Can VA1 and VA2 both map to PA ?

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

February 23, 2010 CS152, Spring 2010

A solution via Second Level Cache

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

February 23, 2010 CS152, Spring 2010

Anti-Aliasing Using L2: MIPS R10000

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

 into L2 tag

•  Suppose VA1 and VA2 both map to PA and VA1
is already in L1, L2 (VA1 % VA2)

•  After VA2 is resolved to PA, a collision will be
detected in L2.

•  VA1 will be purged from L1 and L2, and VA2 will
be loaded " no aliasing !

February 23, 2010 CS152, Spring 2010

Virtually-Addressed L1:
Anti-Aliasing using L2

 VPN Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

February 23, 2010 CS152, Spring 2010

Page Fault Handler
• When the referenced page is not in DRAM:

– The missing page is located (or created)
– It is brought in from disk, and page table is updated

 Another job may be run on the CPU while the first job waits for
the requested page to be read from disk

– If no free pages are left, a page is swapped out
 Pseudo-LRU replacement policy

• Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS
– Untranslated addressing mode is essential to allow

kernel to access page tables

February 23, 2010 CS152, Spring 2010

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

February 23, 2010 CS152, Spring 2010

A PTE in primary memory contains
 primary or secondary memory addresses

A PTE in secondary memory contains
 only secondary memory addresses

" a page of a PT can be swapped out only
 if none its PTE’s point to pages in the
 primary memory

Why?__________________________________

Swapping a Page of a Page Table

February 23, 2010 CS152, Spring 2010

Atlas Revisited

•  One PAR for each physical page

•  PAR’s contain the VPN’s of the pages
resident in primary memory

•  Advantage: The size is proportional to
the size of the primary memory

•  What is the disadvantage ?

VPN

PAR’s

PPN

February 23, 2010 CS152, Spring 2010

Hashed Page Table:
Approximating Associative Addressing

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN d Virtual Address

VPN PID DPN

VPN PID

PID

•  Hashed Page Table is typically 2 to 3 times
larger than the number of PPN’s to reduce
collision probability

•  It can also contain DPN’s for some non-
resident pages (not common)

•  If a translation cannot be resolved in this table
then the software consults a data structure
that has an entry for every existing page (e.g.,
full page table)

February 23, 2010 CS152, Spring 2010

Base of Table

Power PC: Hashed Page Table

hash
Offset + PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

•  Each hash table slot has 8 PTE's <VPN,PPN> that are
searched sequentially

•  If the first hash slot fails, an alternate hash function is
used to look in another slot

 All these steps are done in hardware!
•  Hashed Table is typically 2 to 3 times larger than the

number of physical pages
•  The full backup Page Table is a software data structure

February 23, 2010 CS152, Spring 2010

Virtual Memory Use Today - 1

•  Desktops/servers have full demand-paged virtual
memory

– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

•  Vector supercomputers have translation and protection
but not demand-paging

•  (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in

memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions

February 23, 2010 CS152, Spring 2010

Virtual Memory Use Today - 2

•  Most embedded processors and DSPs provide physical
addressing only

– Can’t afford area/speed/power budget for virtual memory support
– Often there is no secondary storage to swap to!
– Programs custom written for particular memory configuration in

product
– Difficult to implement restartable instructions for exposed architectures

February 23, 2010 CS152, Spring 2010

Acknowledgements
•  These slides contain material developed and

copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
– David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

