
March 2, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 12 - Complex Pipelines

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

March 2, 2010 CS152, Spring 2010 2

Last time in Lecture 11
•  Modern page-based virtual memory systems provide:

–  Translation, Protection, Virtual memory.

•  Translation and protection information stored in page
tables, held in main memory

•  Translation and protection information cached in
“translation lookaside buffer” (TLB) to provide single
cycle translation+protection check in common case

•  VM interacts with cache design
–  Physical cache tags require address translation before tag

lookup, or use untranslated offset bits to index cache.
–  Virtual tags do not require translation before cache hit/miss

determination, but need to be flushed or extended with ASID to
cope with context swaps. Also, must deal with virtual address
aliases (usually by disallowing copies in cache).

March 2, 2010 CS152, Spring 2010 3

Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:

•  Long latency or partially pipelined floating-
point units

•  Memory systems with variable access time

•  Multiple arithmetic and memory units

March 2, 2010 CS152, Spring 2010 4

Floating-Point Unit (FPU)
Much more hardware than an integer unit

Single-cycle FPU is a bad idea - why?

•  it is common to have several FPU’s

•  it is common to have different types of FPU’s
 Fadd, Fmul, Fdiv, ...

•  an FPU may be pipelined, partially pipelined or
not pipelined

To operate several FPU’s concurrently the FP register
file needs to have more read and write ports

March 2, 2010 CS152, Spring 2010 5

Functional Unit Characteristics

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

⇒ operands are latched when an instruction
enters a functional unit

⇒ inputs to a functional unit (e.g., register file)
 can change during a long latency operation

1cyc 1cyc 1cyc

2 cyc 2 cyc

March 2, 2010 CS152, Spring 2010 6

Floating-Point ISA

Interaction between the floating-point datapath
and the integer datapath is determined largely
by the ISA

MIPS ISA
•  separate register files for FP and Integer instructions

the only interaction is via a set of move
instructions (some ISA’s don’t even permit this)

•  separate load/store for FPR’s and GPR’s but both
 use GPR’s for address calculation
•  separate conditions for branches

FP branches are defined in terms of condition codes

March 2, 2010 CS152, Spring 2010 7

Realistic Memory Systems

Latency of access to the main memory is usually
much greater than one cycle and often unpredictable

Solving this problem is a central issue in
computer architecture

Common approaches to improving memory
performance

•  caches
single cycle except in case of a miss ⇒ stall

•  interleaved memory
multiple memory accesses ⇒ bank conflicts

•  split-phase memory operations (separate memory
request from response)

⇒ out-of-order responses

March 2, 2010 CS152, Spring 2010 8

Multiple Functional Units in Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

March 2, 2010 CS152, Spring 2010 9

Complex Pipeline Control Issues

•  Structural conflicts at the execution stage if some
 FPU or memory unit is not pipelined and takes
 more than one cycle

•  Structural conflicts at the write-back stage due to
 variable latencies of different functional units

•  Out-of-order write hazards due to variable
 latencies of different functional units

•  How to handle exceptions?

March 2, 2010 CS152, Spring 2010 10

Complex In-Order Pipeline

Delay writeback so all
operations have same
latency to W stage
– Write ports never

oversubscribed (one inst. in &
one inst. out every cycle)

–  Stall pipeline on long latency
operations, e.g., divides, cache
misses

–  Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined
divider

How to prevent increased writeback
latency from slowing down single
cycle integer operations? Bypassing

March 2, 2010 CS152, Spring 2010 11

In-Order Superscalar Pipeline

• Fetch two instructions per cycle;
issue both simultaneously if one
is integer/memory and other is
floating point

•  Inexpensive way of increasing
throughput, examples include
Alpha 21064 (1992) & MIPS
R5000 series (1996)

• Same idea can be extended to
wider issue by duplicating
functional units (e.g. 4-issue
UltraSPARC) but regfile ports and
bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined
divider

March 2, 2010 CS152, Spring 2010 12

Types of Data Hazards
Consider executing a sequence of

 rk ← ri op rj
type of instructions

Data-dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

March 2, 2010 CS152, Spring 2010 13

Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage but

data hazards due to memory operands can be
determined only after computing the effective
address

store M[r1 + disp1] ← r2
load r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

March 2, 2010 CS152, Spring 2010 14

Data Hazards: An Example

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

March 2, 2010 CS152, Spring 2010 15

Instruction Scheduling

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

March 2, 2010 CS152, Spring 2010 16

Out-of-order Completion
In-order Issue

 Latency
I1 DIVD f6, f6, f4 4

I2 LD f2, 45(r3) 1

I3 MULTD f0, f2, f4 3

I4 DIVD f8, f6, f2 4

I5 SUBD f10, f0, f6 1

I6 ADDD f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

March 2, 2010 CS152, Spring 2010
3/10/2009

17

CDC 6600 Seymour Cray, 1963

• A fast pipelined machine with 60-bit words
–  128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)
–  Floating Point: adder, 2 multipliers, divider
–  Integer: adder, 2 incrementers, ...

• Hardwired control (no microcoding)
• Scoreboard for dynamic scheduling of instructions
• Ten Peripheral Processors for Input/Output

–  a fast multi-threaded 12-bit integer ALU
• Very fast clock, 10 MHz (FP add in 4 clocks)
• >400,000 transistors, 750 sq. ft., 5 tons, 150 kW,

novel freon-based technology for cooling
• Fastest machine in world for 5 years (until 7600)

–  over 100 sold ($7-10M each)

March 2, 2010 CS152, Spring 2010 18

IBM Memo on CDC6600
Thomas Watson Jr., IBM CEO, August 1963:

 “Last week, Control Data ... announced the 6600
system. I understand that in the laboratory
developing the system there are only 34 people
including the janitor. Of these, 14 are engineers
and 4 are programmers... Contrasting this modest
effort with our vast development activities, I fail to
understand why we have lost our industry
leadership position by letting someone else offer
the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has
answered his own question.”

March 2, 2010 CS152, Spring 2010 19

•  Separate instructions to manipulate three types of reg.
 8 60-bit data registers (X)

 8 18-bit address registers (A)
 8 18-bit index registers (B)

•  All arithmetic and logic instructions are reg-to-reg

•  Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

opcode i j k Ri ← (Rj) op (Rk)

CDC 6600:
A Load/Store Architecture

opcode i j disp Ri ← M[(Rj) + disp]

6 3 3 3

6 3 3 18

March 2, 2010 CS152, Spring 2010 20

CDC 6600: Datapath

Address Regs Index Regs
 8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory

128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr

March 2, 2010 CS152, Spring 2010 21

CDC6600 ISA designed to simplify
high-performance implementation
•  Use of three-address, register-register ALU

instructions simplifies pipelined implementation
–  No implicit dependencies between inputs and outputs

•  Decoupling setting of address register (Ar) from
retrieving value from data register (Xr) simplifies
providing multiple outstanding memory accesses

–  Software can schedule load of address register before use of value
–  Can interleave independent instructions inbetween

•  CDC6600 has multiple parallel but unpipelined
functional units

–  E.g., 2 separate multipliers

•  Follow-on machine CDC7600 used pipelined
functional units

–  Foreshadows later RISC designs

March 2, 2010 CS152, Spring 2010 22

CDC6600: Vector Addition
B0 ← - n

loop: JZE B0, exit
A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1
A6 ← B0 + c0 store X6
B0 ← B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

March 2, 2010 CS152, Spring 2010 23

CS152 Administrivia
•  Tuesday Mar 9, Quiz 2

–  Caches and Virtual memory L6 - L11, PS 2, Lab 2

March 2, 2010 CS152, Spring 2010 24

Complex Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

March 2, 2010 CS152, Spring 2010 25

When is it Safe to Issue an
Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

•  Is the required function unit available?

•  Is the input data available? ⇒ RAW?

•  Is it safe to write the destination? ⇒ WAR? WAW?

•  Is there a structural conflict at the WB stage?

March 2, 2010 CS152, Spring 2010 26

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

The instruction i at the Issue stage consults this table
FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

March 2, 2010 CS152, Spring 2010 27

Simplifying the Data Structure
Assuming In-order Issue

Suppose the instruction is not dispatched by the
Issue stage if a RAW hazard exists or the required
FU is busy, and that operands are latched by
functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?
NO: Operands read at issue

YES: Out-of-order completion

March 2, 2010 CS152, Spring 2010 28

Simplifying the Data Structure ...

No WAR hazard
 ⇒ no need to keep src1 and src2

The Issue stage does not dispatch an instruction in
case of a WAW hazard

 ⇒ a register name can occur at most once in the
 dest column

WP[reg#] : a bit-vector to record the registers for
which writes are pending

 These bits are set to true by the Issue stage and
 set to false by the WB stage

 ⇒ Each pipeline stage in the FU's must carry the
 dest field and a flag to indicate if it is valid
 “the (we, ws) pair”

March 2, 2010 CS152, Spring 2010 29

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.
 (FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
 writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

March 2, 2010 CS152, Spring 2010 30

Scoreboard Dynamics

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

 t0 I1 f6 f6
 t1 I2 f2 f6 f6, f2
 t2 f6 f2 f6, f2 I2
 t3 I3 f0 f6 f6, f0
 t4 f0 f6 f6, f0 I1
 t5 I4 f0 f8 f0, f8
 t6 f8 f0 f0, f8 I3
 t7 I5 f10 f8 f8, f10
 t8 f8 f10 f8, f10 I5
 t9 f8 f8 I4
t10 I6 f6 f6
t11 f6 f6 I6

March 2, 2010 CS152, Spring 2010 31

In-Order Issue Limitations: an example
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

In-order restriction prevents
instruction 4 from being dispatched

March 2, 2010 CS152, Spring 2010 32

Out-of-Order Issue

•  Issue stage buffer holds multiple instructions waiting to issue.
•  Decode adds next instruction to buffer if there is space and the instruction

does not cause a WAR or WAW hazard.
–  Note: WAR possible again because issue is out-of-order (WAR not possible with in-

order issue and latching of input operands at functional unit)

•  Any instruction in buffer whose RAW hazards are satisfied can be issued
(for now at most one dispatch per cycle). On a write back (WB), new
instructions may get enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

March 2, 2010 CS152, Spring 2010 33

Issue Limitations: In-Order and Out-of-Order
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

March 2, 2010 CS152, Spring 2010 34

How many instructions can be in
the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement!

Number of Registers

March 2, 2010 CS152, Spring 2010 35

Overcoming the Lack of Register
Names

Floating Point pipelines often cannot be kept filled
with small number of registers.

 IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 using on-the-fly register renaming

March 2, 2010 CS152, Spring 2010 36

Instruction-level Parallelism via Renaming
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

March 2, 2010 CS152, Spring 2010 37

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

