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Last time in Lecture 11 
•  Modern page-based virtual memory systems provide: 

–  Translation, Protection, Virtual memory. 

•  Translation and protection information stored in page 
tables, held in main memory 

•  Translation and protection information cached in 
“translation lookaside buffer” (TLB) to provide single 
cycle translation+protection check in common case 

•  VM interacts with cache design 
–  Physical cache tags require address translation before tag 

lookup, or use untranslated offset bits to index cache. 
–  Virtual tags do not require translation before cache hit/miss 

determination, but need to be flushed or extended with ASID to 
cope with context swaps.  Also, must deal with virtual address 
aliases (usually by disallowing copies in cache). 
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Complex Pipelining: Motivation 

Pipelining becomes complex when we want 
high performance in the presence of: 

•  Long latency or partially pipelined floating-
point units 

•  Memory systems with variable access time 

•  Multiple arithmetic and memory units 
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Floating-Point Unit (FPU) 
Much more hardware than an integer unit 

Single-cycle FPU is a bad idea - why? 

•  it is common to have several FPU’s 

•  it is common to have different types of FPU’s  
    Fadd, Fmul, Fdiv, ... 

•  an FPU may be pipelined, partially pipelined or 
not pipelined 

To operate several FPU’s concurrently the FP register 
file needs to have more read and write ports 
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Functional Unit Characteristics 

fully 
pipelined 

partially 
pipelined 

Functional units have internal pipeline registers 

⇒   operands are latched when an instruction  
enters a functional unit  

⇒   inputs to a functional unit (e.g., register file) 
     can change during a long latency operation 

1cyc 1cyc 1cyc 

2 cyc 2 cyc 



March 2, 2010 CS152, Spring 2010 6 

Floating-Point ISA 

Interaction between the floating-point datapath 
and the integer datapath is determined largely 
by the ISA 

MIPS ISA  
•  separate register files for FP and Integer instructions 

the only interaction is via a set of move 
instructions  (some ISA’s don’t even permit this) 

•  separate load/store for FPR’s and GPR’s but both 
   use GPR’s for address calculation  
•  separate conditions for branches 

FP branches are defined in terms of condition codes 
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Realistic Memory Systems  

Latency of access to the main memory is usually 
much greater than one cycle and often unpredictable 

Solving this problem is a central issue in 
computer architecture  

Common approaches to improving memory 
performance 

•  caches  
single cycle except in case of a miss ⇒  stall 

•  interleaved memory  
multiple memory accesses ⇒ bank conflicts 

•  split-phase memory operations (separate memory 
request from response) 

⇒ out-of-order responses 
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Multiple Functional Units in Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 
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Complex Pipeline Control Issues 

•  Structural conflicts at the execution stage if some  
   FPU or memory unit is not pipelined and takes 
   more than one cycle 

•  Structural conflicts at the write-back stage due to  
   variable latencies of different functional units 

•  Out-of-order write hazards due to variable  
   latencies of different functional units 

•  How to handle exceptions? 
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Complex In-Order Pipeline 

Delay writeback so all 
operations have same 
latency to W stage 
– Write ports never 

oversubscribed (one inst. in & 
one inst. out every cycle) 

–  Stall pipeline on long latency 
operations, e.g., divides, cache 
misses 

–  Handle exceptions in-order at 
commit point 

Commit 
Point 

PC 
Inst. 
Mem D Decode X1 X2 

Data 
Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipelined 
divider 

How to prevent increased writeback 
latency from slowing down single 
cycle integer operations?  Bypassing 
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In-Order Superscalar Pipeline 

• Fetch two instructions per cycle; 
issue both simultaneously if one 
is integer/memory and other is 
floating point 

•  Inexpensive way of increasing 
throughput, examples include 
Alpha 21064 (1992) & MIPS 
R5000 series (1996) 

• Same idea can be extended to 
wider issue by duplicating 
functional units (e.g. 4-issue 
UltraSPARC) but regfile ports and 
bypassing costs grow quickly 

Commit 
Point 

2 
PC 

Inst. 
Mem D 

Dual 
Decode X1 X2 

Data 
Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipelined 
divider 
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Types of Data Hazards  
Consider executing a sequence of  

  rk  ←  ri  op  rj  
type of instructions 

Data-dependence 
r3  ←  r1 op r2  Read-after-Write   
r5  ←  r3 op r4  (RAW) hazard 

Anti-dependence 
r3  ←  r1 op r2  Write-after-Read  
r1  ←  r4 op r5  (WAR) hazard 

Output-dependence 
r3  ←  r1 op r2   Write-after-Write  
r3  ←  r6 op r7    (WAW) hazard 
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Register vs. Memory Dependence 

Data hazards due to register operands can be 
determined at the decode stage but 

data hazards due to memory operands can be 
determined only after computing the effective  
address 

store   M[r1 +  disp1] ← r2   
load   r3  ←  M[r4 +  disp2] 

Does (r1 + disp1) = (r4 + disp2) ? 
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Data Hazards: An Example 

I1  DIVD   f6,  f6,  f4 

I2  LD   f2,  45(r3) 

I3  MULTD  f0,  f2,  f4 

I4  DIVD   f8,  f6,  f2 

I5  SUBD   f10,  f0,  f6 

I6  ADDD   f6,  f8,  f2 

RAW Hazards 
WAR Hazards 
WAW Hazards 
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Instruction Scheduling 

I6 

I2 

I4 

I1 

I5 

I3 

Valid orderings: 
in-order  I1   I2   I3   I4   I5  I6 

out-of-order   

out-of-order 

I1  DIVD   f6,  f6,  f4 

I2  LD   f2,  45(r3) 

I3  MULTD  f0,  f2,  f4 

I4  DIVD   f8,  f6,  f2 

I5  SUBD   f10,  f0,  f6 

I6  ADDD   f6,  f8,  f2 

I2   I1   I3   I4   I5  I6 

I1   I2  I3   I5   I4  I6 
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Out-of-order Completion 
In-order Issue 

             Latency 
I1  DIVD   f6,  f6,  f4   4 

I2  LD   f2,  45(r3)    1 

I3  MULTD  f0,  f2,  f4   3 

I4  DIVD   f8,  f6,  f2   4 

I5  SUBD   f10,  f0,  f6   1 

I6  ADDD   f6,  f8,  f2   1 

in-order comp   1   2 

out-of-order comp  1   2 

1   2   3   4        3   5   4   6   5   6 

2   3   1   4   3   5   5   4   6   6 
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CDC 6600 Seymour Cray, 1963 

• A fast pipelined machine with 60-bit words 
–  128 Kword main memory capacity, 32 banks 

• Ten functional units (parallel, unpipelined) 
–  Floating Point: adder, 2 multipliers, divider 
–  Integer: adder, 2 incrementers, ... 

• Hardwired control (no microcoding) 
• Scoreboard for dynamic scheduling of instructions  
• Ten Peripheral Processors for Input/Output 

–  a fast multi-threaded 12-bit integer ALU 
• Very fast clock, 10 MHz (FP add in 4 clocks) 
• >400,000 transistors,  750 sq. ft., 5 tons, 150 kW, 

novel freon-based technology for cooling 
• Fastest machine in world for 5 years (until 7600) 

–  over 100 sold ($7-10M each) 
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IBM Memo on CDC6600 
Thomas Watson Jr., IBM CEO, August 1963: 

 “Last week, Control Data ... announced the 6600 
system. I understand that in the laboratory 
developing the system there are only 34 people 
including the janitor. Of these, 14 are engineers 
and 4 are programmers... Contrasting this modest 
effort with our vast development activities, I fail to 
understand why we have lost our industry 
leadership position by letting someone else offer 
the world's most powerful computer.” 

To which Cray replied: “It seems like Mr. Watson has 
answered his own question.” 
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•  Separate instructions to manipulate three types of reg. 
   8   60-bit data registers (X) 

        8   18-bit address registers (A) 
     8   18-bit index registers (B) 

•  All arithmetic and logic instructions are reg-to-reg  

•  Only Load and Store instructions refer to memory! 

 Touching address registers 1 to 5 initiates a load   
                  6 to 7 initiates a store  

 - very useful for vector operations 

opcode   i      j      k     Ri  ← (Rj) op (Rk) 

CDC 6600:  
A Load/Store Architecture 

opcode   i     j                disp                  Ri ← M[(Rj) + disp] 

6 3 3 3 

6 3 3 18 



March 2, 2010 CS152, Spring 2010 20 

CDC 6600: Datapath 

Address Regs         Index Regs 
  8 x 18-bit                8 x 18-bit 

Operand Regs 
8 x 60-bit 

Inst. Stack 
8 x 60-bit 

IR 

10 Functional 
Units 

Central 
Memory 

128K words, 
32 banks, 
1µs cycle 

result 
addr 

result 

operand 

operand 
addr 
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CDC6600 ISA designed to simplify 
high-performance implementation 
•  Use of three-address, register-register ALU 

instructions simplifies pipelined implementation 
–  No implicit dependencies between inputs and outputs 

•  Decoupling setting of address register (Ar) from 
retrieving value from data register (Xr) simplifies 
providing multiple outstanding memory accesses 

–  Software can schedule load of address register before use of value 
–  Can interleave independent instructions inbetween 

•  CDC6600 has multiple parallel but unpipelined 
functional units 

–  E.g., 2 separate multipliers 

•  Follow-on machine CDC7600 used pipelined 
functional units 

–  Foreshadows later RISC designs 
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CDC6600: Vector Addition 
B0  ←  - n 

loop:  JZE   B0, exit 
A0  ←  B0 + a0  load X0 
A1  ←  B0 + b0  load X1 
X6  ←  X0 + X1 
A6  ←  B0 + c0  store X6 
B0  ←  B0 + 1 
jump loop 

Ai = address register 
Bi = index register 
Xi = data register 
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CS152 Administrivia 
•  Tuesday Mar 9, Quiz 2 

–  Caches and Virtual memory L6 - L11, PS 2, Lab 2 
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Complex Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing? 
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When is it Safe to Issue an 
Instruction? 

Suppose a data structure keeps track of all the 
instructions in all the functional units 

The following checks need to be made before the 
Issue stage can dispatch an instruction 

•  Is the required function unit available? 

•  Is the input data available?   ⇒   RAW? 

•  Is it safe to write the destination?  ⇒  WAR?  WAW? 

•  Is there a structural conflict at the WB stage? 
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A Data Structure for Correct Issues 
Keeps track of the status of Functional Units 

The instruction i at the Issue stage consults this table 
FU available?  check the busy column 
RAW?   search the dest column for i’s sources 
WAR?   search the source columns for i’s destination 
WAW?   search the dest column for i’s destination 

An entry is added to the table if no hazard is detected; 
An entry is removed from the table after Write-Back 

  Name  Busy   Op  Dest  Src1  Src2    
Int 
Mem   
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 
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Simplifying the Data Structure  
Assuming In-order Issue 

Suppose the instruction is not dispatched by the 
Issue stage if a RAW hazard exists or the required 
FU is busy, and that operands are latched by 
functional unit on issue: 

Can the dispatched instruction cause a 
WAR hazard ? 

WAW hazard ? 
NO: Operands read at issue 

YES: Out-of-order completion 
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Simplifying the Data Structure ... 

No WAR hazard  
 ⇒  no need to keep src1 and src2 

The Issue stage does not dispatch an instruction in  
case of a WAW hazard 

 ⇒ a register name can occur at most once in the 
         dest column 

WP[reg#] : a bit-vector to record the registers for 
which writes are pending 

 These bits are set to true by the Issue stage and  
          set to false by the WB stage 

 ⇒ Each pipeline stage in the FU's must carry the  
         dest field and a flag to indicate if it is valid 
        “the (we, ws) pair” 
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Scoreboard for In-order Issues 

Busy[FU#] : a bit-vector to indicate FU’s availability. 
  (FU = Int, Add, Mult, Div) 

These bits are hardwired to FU's. 

WP[reg#] : a bit-vector to record the registers for which
  writes are pending.  

These bits are set to true by the Issue stage and set to 
false by the WB stage 

Issue checks the instruction (opcode dest src1 src2)  
against the scoreboard (Busy & WP) to dispatch 

FU available?   
RAW?    
WAR? 
WAW?   

Busy[FU#] 
WP[src1] or WP[src2] 
cannot arise 
WP[dest] 
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Scoreboard Dynamics 

I1   DIVD   f6,  f6,  f4 
I2   LD   f2,  45(r3)  
I3   MULTD   f0,  f2,  f4 
I4   DIVD   f8,  f6,  f2 
I5   SUBD   f10,  f0,  f6 
I6   ADDD   f6,  f8,  f2 

Functional Unit Status        Registers Reserved  
Int(1) Add(1)  Mult(3)   Div(4)    WB  for Writes 

 t0  I1        f6      f6 
 t1  I2   f2          f6    f6, f2 
 t2                   f6      f2    f6, f2   I2 
 t3  I3       f0       f6      f6, f0 
 t4           f0             f6    f6, f0   I1 
 t5  I4              f0 f8       f0, f8 
 t6           f8           f0    f0, f8   I3 
 t7  I5         f10   f8      f8, f10 
 t8         f8 f10    f8, f10   I5 
 t9              f8    f8   I4 
t10 I6         f6          f6 
t11                     f6     f6   I6 
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In-Order Issue Limitations: an example 
             latency 

1  LD   F2,  34(R2)   1 

2  LD   F4,  45(R3)   long 

3  MULTD  F6,  F4,  F2  3 

4  SUBD   F8,  F2,  F2  1 

5  DIVD   F4,  F2,  F8  4 

6  ADDD   F10,  F6,  F4  1 

In-order:    1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 

1 2 

3 4 

5 

6 

In-order restriction prevents 
instruction 4 from being dispatched 
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Out-of-Order Issue 

•  Issue stage buffer holds multiple instructions waiting to issue. 
•  Decode adds next instruction to buffer if there is  space and the instruction 

does not cause a WAR or WAW hazard. 
–  Note: WAR possible again because issue is out-of-order (WAR not possible with in-

order issue and latching of input operands at functional unit) 

•  Any instruction in buffer whose RAW hazards are satisfied can be issued 
(for now at most one dispatch per cycle). On a write back (WB), new 
instructions may get enabled. 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Issue 
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Issue Limitations: In-Order and Out-of-Order 
             latency 

1  LD   F2,  34(R2)   1 

2  LD   F4,  45(R3)   long 

3  MULTD  F6,  F4,  F2  3 

4  SUBD   F8,  F2,  F2  1 

5  DIVD   F4,  F2,  F8  4 

6  ADDD   F10,  F6,  F4  1 

In-order:    1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 

1 2 

3 4 

5 

6 

Out-of-order:    1 (2,1) 4 4 .  .  .  .  2 3  .  .  3 5 .  .  . 5 6 6 

Out-of-order execution did not allow any significant improvement! 
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How many instructions can be in 
the pipeline? 

Which features of an ISA limit the number of 
instructions in the pipeline? 

Out-of-order dispatch by itself does not provide 
any significant performance improvement! 

Number of Registers 
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Overcoming the Lack of Register 
Names 

Floating Point pipelines often cannot be kept filled 
with small number of registers. 

 IBM 360 had only 4 floating-point registers 

Can a microarchitecture use more registers than  
specified by the ISA without loss of ISA 
compatibility ? 

Robert Tomasulo of IBM suggested an ingenious 
solution in 1967 using on-the-fly register renaming 
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Instruction-level Parallelism via Renaming 
             latency 

1  LD   F2,  34(R2)   1 

2  LD   F4,  45(R3)   long 

3  MULTD  F6,  F4,  F2  3 

4  SUBD   F8,  F2,  F2  1 

5  DIVD   F4’,  F2,  F8  4 

6  ADDD   F10,  F6,  F4’  1 

In-order:    1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 
Out-of-order:    1 (2,1) 4 4 5  .  .  .  2 (3,5) 3 6 6 

1 2 

3 4 

5 

6 

X 

Any antidependence can be eliminated by renaming. 
 (renaming  ⇒  additional storage)   
 Can it be done in hardware? yes! 
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