
March 4, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 13 - Out-of-Order Issue,
Register Renaming,
& Branch Prediction

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

March 4, 2010 CS152, Spring 2010 2

Last time in Lecture 12
•  Pipelining is complicated by multiple and/or variable

latency functional units
•  Out-of-order and/or pipelined execution requires

tracking of dependencies
–  RAW
–  WAR
–  WAW

•  Dynamic issue logic can support out-of-order
execution to improve performance

–  Last time, looked at simple scoreboard to track out-of-order
completion

•  Hardware register renaming can further improve
performance by removing hazards.

March 4, 2010 CS152, Spring 2010 3

Out-of-Order Issue

•  Issue stage buffer holds multiple instructions waiting to issue.
•  Decode adds next instruction to buffer if there is space and the instruction does

not cause a WAR or WAW hazard.
–  Note: WAR possible again because issue is out-of-order (WAR not possible with in-order issue and

latching of input operands at functional unit)

•  Any instruction in buffer whose RAW hazards are satisfied can be issued (for now
at most one dispatch per cycle). On a write back (WB), new instructions may get
enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

March 4, 2010 CS152, Spring 2010 4

Overcoming the Lack of Register
Names

Floating Point pipelines often cannot be kept filled
with small number of registers.

 IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 using on-the-fly register renaming

March 4, 2010 CS152, Spring 2010 5

Instruction-level Parallelism via Renaming
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

March 4, 2010 CS152, Spring 2010 6

Register Renaming

•  Decode does register renaming and adds instructions to
the issue stage reorder buffer (ROB)

 ⇒ renaming makes WAR or WAW hazards impossible

•  Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.
	
 	
⇒ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

March 4, 2010 CS152, Spring 2010 7

Dataflow Execution

Instruction slot is candidate for execution when:
•  It holds a valid instruction (“use” bit is set)
•  It has not already started execution (“exec” bit is clear)
•  Both operands are available (p1 and p2 are set)

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

March 4, 2010 CS152, Spring 2010 8

Renaming & Out-of-order Issue
An example

•  When are tags in sources
 replaced by data?

•  When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4
 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0
 3 1 0 MUL 1 v2 1 v1

March 4, 2010 CS152, Spring 2010 9

Data-Driven Execution
Renaming
table &
reg file

Reorder
buffer

Load
 Unit

FU FU Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

•  Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also associates tag with register in regfile
•  When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

March 4, 2010 CS152, Spring 2010 10

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
• “exec” bit is set when instruction begins execution
• When an instruction completes its “use” bit is marked free
•  ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

March 4, 2010 CS152, Spring 2010 11

IBM 360/91 Floating-Point Unit
R. M. Tomasulo, 1967

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-
Point
Reg

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data 2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

March 4, 2010 CS152, Spring 2010 12

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.

 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

March 4, 2010 CS152, Spring 2010 13

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

•  the effect of all instructions up to and including Ii is
 totally complete
•  no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

March 4, 2010 CS152, Spring 2010 14

Effect on Interrupts
Out-of-order Completion

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6
 restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed
 - want to start execution of later instructions before
 exception checks finished on earlier instructions

March 4, 2010 CS152, Spring 2010 15

Exception Handling
(In-Order Five-Stage Pipeline)

•  Hold exception flags in pipeline until commit point (M stage)
•  Exceptions in earlier pipe stages override later exceptions
•  Inject external interrupts at commit point (override others)
•  If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC
Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback

Select
Handler

PC

Commit
Point

March 4, 2010 CS152, Spring 2010 16

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Result
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

March 4, 2010 CS152, Spring 2010 17

In-Order Commit for Precise Exceptions

•  Instructions fetched and decoded into instruction
 reorder buffer in-order
•  Execution is out-of-order (⇒ out-of-order completion)
•  Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

March 4, 2010 CS152, Spring 2010 18

Extensions for Precise Exceptions

Reorder buffer

ptr2
next to
commit

ptr1
next

available

•  add <pd, dest, data, cause> fields in the instruction template
•  commit instructions to reg file and memory in program
 order ⇒ buffers can be maintained circularly
•  on exception, clear reorder buffer by resetting ptr1=ptr2

 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

March 4, 2010 CS152, Spring 2010 19

Rollback and Renaming

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

March 4, 2010 CS152, Spring 2010 20

Renaming Table
Register

File

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v
r2

tag
valid bit

March 4, 2010 CS152, Spring 2010 21

CS152 Administrivia

March 4, 2010 CS152, Spring 2010 22

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

Control Flow Penalty

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline width

March 4, 2010 CS152, Spring 2010 23

Instruction Taken known? Target known?

J

JR
BEQZ/BNEZ

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces
of information from the preceding instruction:

 1) Is the preceding instruction a taken branch?

 2) If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

After Reg. Fetch*

*Assuming zero detect on register read

March 4, 2010 CS152, Spring 2010 24

Branch Penalties in Modern Pipelines

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

March 4, 2010 CS152, Spring 2010 25

Reducing Control Flow Penalty
Software solutions

•  Eliminate branches - loop unrolling
 Increases the run length

•  Reduce resolution time - instruction scheduling
 Compute the branch condition as early
 as possible (of limited value)

Hardware solutions
•  Find something else to do - delay slots

 Replaces pipeline bubbles with useful work
 (requires software cooperation)

•  Speculate - branch prediction
Speculative execution of instructions beyond
the branch

March 4, 2010 CS152, Spring 2010 26

Branch Prediction
Motivation:

Branch penalties limit performance of deeply pipelined
processors

Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:

•  Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
•  Keep result computation separate from commit
•  Kill instructions following branch in pipeline
•  Restore state to state following branch

March 4, 2010 CS152, Spring 2010 27

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches,
e.g., Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

JZ

JZ
backward

90%
forward

50%

March 4, 2010 CS152, Spring 2010 28

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good
predictor of the way it will resolve at the next
execution

Spatial correlation
Several branches may resolve in a highly
correlated manner (a preferred path of
execution)

March 4, 2010 CS152, Spring 2010 29

•  Assume 2 BP bits per instruction
•  Change the prediction after two consecutive mistakes!

¬take
wrong

taken
¬ taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬ taken

¬ taken ¬ taken

BP state:
 (predict take/¬take) x (last prediction right/wrong)

Branch Prediction Bits

March 4, 2010 CS152, Spring 2010 30

Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

March 4, 2010 CS152, Spring 2010 31

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last
N branches executed by the processor

if (x[i] < 7) then
 y += 1;

if (x[i] < 5) then
 c -= 4;

If first condition false, second condition also false

March 4, 2010 CS152, Spring 2010 32

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in Taken/
¬Taken results of
each branch

2-bit global branch
history shift register

Taken/¬Taken?

March 4, 2010 CS152, Spring 2010 33

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

