
March 11, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 14 - Advanced Superscalars

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

March 11, 2010 CS152, Spring 2010 2

Last time in Lecture 13
•  Register renaming removes WAR, WAW hazards
•  Instruction execution divided into four major stages:

–  Instruction Fetch, Decode/Rename, Execute/Complete, Commit

•  Control hazards are serious impediment to
superscalar performance

•  Dynamic branch predictors can be quite accurate
(>95%) and avoid most control hazards

•  Branch History Tables (BHTs) just predict direction
(later in pipeline)

–  Just need a few bits per entry (2 bits gives hysteresis)
–  Need to decode instruction bits to determine whether this is a

branch and what the target address is

March 11, 2010 CS152, Spring 2010 3

Limitations of BHTs
Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly
predicted
taken branch
penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

March 11, 2010 CS152, Spring 2010 4

Branch Target Buffer

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

March 11, 2010 CS152, Spring 2010 5

Address Collisions

What will be fetched after the instruction at 1028?
 BTB prediction =
 Correct target =

	

⇒

Assume a
128-entry
BTB

BPb target
take 236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

 Is this a common occurrence?
 Can we avoid these bubbles?

March 11, 2010 CS152, Spring 2010 6

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

	

⇒ Do not update it for other instructions

For all other instructions the next PC is PC+4 !

How to achieve this effect without decoding the
instruction?

March 11, 2010 CS152, Spring 2010 7

Branch Target Buffer (BTB)

•  Keep both the branch PC and target PC in the BTB
•  PC+4 is fetched if match fails
•  Only taken branches and jumps held in BTB
•  Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

March 11, 2010 CS152, Spring 2010 8

Combining BTB and BHT
•  BTB entries are considerably more expensive than BHT, but can

redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

•  BHT can hold many more entries and is more accurate

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHT BHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

March 11, 2010 CS152, Spring 2010 9

Uses of Jump Register (JR)
•  Switch statements (jump to address of matching case)

•  Dynamic function call (jump to run-time function address)

•  Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place
 ⇒ Often one function called from many distinct call sites!

March 11, 2010 CS152, Spring 2010 10

Subroutine Return Stack
Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.

&fb()

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

March 11, 2010 CS152, Spring 2010 11

Mispredict Recovery

In-order execution machines:
–  Assume no instruction issued after branch can write-back before

branch resolves
–  Kill all instructions in pipeline behind mispredicted branch

– Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

March 11, 2010 CS152, Spring 2010 12

In-Order Commit for Precise Exceptions

•  Instructions fetched and decoded into instruction
 reorder buffer in-order
•  Execution is out-of-order (⇒ out-of-order completion)
•  Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

March 11, 2010 CS152, Spring 2010 13

Branch Misprediction in Pipeline

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

•  Can have multiple unresolved branches in ROB
•  Can resolve branches out-of-order by killing all the
 instructions in ROB that follow a mispredicted branch

Branch
Prediction

PC

Complete

March 11, 2010 CS152, Spring 2010 14

t v t v t v

Recovering ROB/Renaming Table

Register
File

Reorder
buffer Load

 Unit
FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

Ptr2
next to commit

Ptr1
next available

rollback
next available

March 11, 2010 CS152, Spring 2010 15

Speculating Both Directions

•  resource requirement is proportional to the
 number of concurrent speculative executions

An alternative to branch prediction is to execute
both directions of a branch speculatively

•  branch prediction takes less resources
 than speculative execution of both paths

•  only half the resources engage in useful work
 when both directions of a branch are executed
 speculatively

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

March 11, 2010 CS152, Spring 2010 16

“Data in ROB” Design
(HP PA8000, Pentium Pro, Core2Duo)

•  On dispatch into ROB, ready sources can be in regfile or in ROB
dest (copied into src1/src2 if ready before dispatch)
•  On completion, write to dest field and broadcast to src fields.
•  On issue, read from ROB src fields

Register File
holds only
committed state

Reorder
buffer

Load
 Unit

FU FU FU Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

March 11, 2010 CS152, Spring 2010 17

CS152 Administrivia
•  Quiz 2 results

March 11, 2010 CS152, Spring 2010 18

Unified Physical Register File
(MIPS R10K, Alpha 21264, Pentium 4)

•  One regfile for both committed and speculative values (no data in ROB)
•  During decode, instruction result allocated new physical register, source
 regs translated to physical regs through rename table
•  Instruction reads data from regfile at start of execute (not in decode)
•  Write-back updates reg. busy bits on instructions in ROB (assoc. search)
•  Snapshots of rename table taken at every branch to recover mispredicts
•  On exception, renaming undone in reverse order of issue (MIPS R10000)

Rename
Table

r1 ti
r2 tj

FU FU Store
 Unit

< t, result >

FU Load
 Unit

FU

t1
t2
.
tn

Reg
File

Snapshots for
mispredict recovery

(ROB not shown)

March 11, 2010 CS152, Spring 2010 19

Pipeline Design with Physical Regfile

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit ALU MEM Store

Buffer D$

Execute

In-Order

In-Order Out-of-Order

Physical Reg. File

kill

kill
kill

kill

March 11, 2010 CS152, Spring 2010 20

Lifetime of Physical Registers

ld r1, (r3)
add r3, r1, #4
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r11)

ld P1, (Px)
add P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
st P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
 When next write of same architectural register commits

•  Physical regfile holds committed and speculative values
•  Physical registers decoupled from ROB entries (no data in ROB)

March 11, 2010 CS152, Spring 2010 21

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

ROB

Rename
Table

Physical Regs Free List

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires
third read port

on Rename
Table for each

instruction)

<R1> P8 p

March 11, 2010 CS152, Spring 2010 22

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8

March 11, 2010 CS152, Spring 2010 23

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1

March 11, 2010 CS152, Spring 2010 24

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3

March 11, 2010 CS152, Spring 2010 25

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2

March 11, 2010 CS152, Spring 2010 26

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd
ROB

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 r3 P1
P5

P3

x sub p P6 p P5 r6 P3
P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

March 11, 2010 CS152, Spring 2010 27

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 r1 P0
x add P0 r3 P1
x sub p P6 p P5 r6 P3

x ld p P7 r1 P0

Physical Register Management

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p
R5

P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

Execute &
Commit p

p

p <R1>

P8

x

March 11, 2010 CS152, Spring 2010 28

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x sub p P6 p P5 r6 P3
x add P0 r3 P1 x add P0 r3 P1

Physical Register Management

ld r1, 0(r3)
add r3, r1, #4
sub r6, r7, r6
add r3, r3, r6
ld r6, 0(r1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 r1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 r3 P2
x ld P0 r6 P4 P3

P4

Execute &
Commit p

p

p <R1>

P8

x

p

p <R3>

P7

March 11, 2010 CS152, Spring 2010 29

Reorder Buffer Holds
Active Instruction Window
…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r1)
…

(Older instructions)

(Newer instructions)

Cycle t

…
ld r1, (r3)
add r3, r1, r2
sub r6, r7, r9
add r3, r3, r6
ld r6, (r1)
add r6, r6, r3
st r6, (r1)
ld r6, (r1)
…

Commit

Fetch

Cycle t + 1

Execute

March 11, 2010 CS152, Spring 2010 30

Superscalar Register Renaming

•  During decode, instructions allocated new physical destination register
•  Source operands renamed to physical register with newest value
•  Execution unit only sees physical register numbers

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
ri
te

Po

rt
s

March 11, 2010 CS152, Spring 2010 31

Superscalar Register Renaming

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri
te

Po

rt
s

=? =?

Must check for
RAW hazards
between
instructions
issuing in same
cycle. Can be
done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

March 11, 2010 CS152, Spring 2010 32

Memory Dependencies

st r1, (r2)
ld r3, (r4)

When can we execute the load?

March 11, 2010 CS152, Spring 2010 33

In-Order Memory Queue

•  Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until
all previous loads and stores have completed
execution

•  Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

•  Need a structure to handle memory ordering…

March 11, 2010 CS152, Spring 2010 34

Conservative O-o-O Load Execution

st r1, (r2)
ld r3, (r4)

•  Split execution of store instruction into two phases: address
calculation and data write

•  Can execute load before store, if addresses known and r4 != r2

•  Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check i.e.,
bottom 12 bits of address)

•  Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

March 11, 2010 CS152, Spring 2010 35

Address Speculation

•  Guess that r4 != r2

•  Execute load before store address known

•  Need to hold all completed but uncommitted load/
store addresses in program order

•  If subsequently find r4==r2, squash load and all
following instructions

 => Large penalty for inaccurate address speculation

st r1, (r2)
ld r3, (r4)

March 11, 2010 CS152, Spring 2010 36

Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)
ld r3, (r4)

•  Guess that r4 != r2 and execute load before store

•  If later find r4==r2, squash load and all following
instructions, but mark load instruction as store-wait

•  Subsequent executions of the same load instruction
will wait for all previous stores to complete

•  Periodically clear store-wait bits

March 11, 2010 CS152, Spring 2010 37

Speculative Loads / Stores
Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

March 11, 2010 CS152, Spring 2010 38

Speculative Store Buffer

•  On store execute:
–  mark entry valid and speculative, and save data and tag of instruction.

•  On store commit:
–  clear speculative bit and eventually move data to cache

•  On store abort:
–  clear valid bit

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

March 11, 2010 CS152, Spring 2010 39

Speculative Store Buffer

•  If data in both store buffer and cache, which should we use?
 Speculative store buffer

•  If same address in store buffer twice, which should we use?
 Youngest store older than load

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

March 11, 2010 CS152, Spring 2010 40

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

March 11, 2010 CS152, Spring 2010 41

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

