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Last time in Lecture 14 
•  BTB allows prediction very early in pipeline 

–  Also handles jump register, although return address stack handles 
subroutine returns better 

•  Unified physical register file machines remove data 
values from ROB 

–  All values only read and written during execution 
–  Only register tags held in ROB 
–  Allocate resources (ROB slot, destination physical register, 

memory reorder queue location) during decode 
–  Issue window can be separated from ROB and made smaller than 

ROB (allocate in decode, free after instruction completes) 
–  Free resources on commit 

•  Speculative store buffer holds store values before 
commit to allow load-store forwarding 

•  Can execute later loads past earlier stores when 
addresses known, or predicted no dependence 
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Speculative Store Buffer 

•  On store execute: 
–  mark entry valid and speculative, and save data and tag of instruction. 

•  On store commit:  
–  clear speculative bit and eventually move data to cache 

•  On store abort: 
–   clear valid bit 

Data 

Load Address 

Tags 

Store Commit Path 

Speculative 
Store 
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L1 Data 
Cache 

Load Data 

Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
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Speculative Store Buffer 

•  If data in both store buffer and cache, which should we use? 
 Speculative store buffer 

•  If same address in store buffer twice, which should we use? 
 Youngest store older than load 
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Instruction Flow in Unified Physical 
Register File Pipeline 

•  Fetch 
– Get instruction bits from current guess at PC, place in fetch buffer 
– Update PC using sequential address or branch predictor (BTB) 

•  Decode/Rename 
–  Take instruction from fetch buffer 
–  Allocate resources to execute instruction: 

» Destination physical register, if instruction writes a register 
»  Entry in reorder buffer to provide in-order commit 
»  Entry in issue window to wait for execution 
»  Entry in memory buffer, if load or store 

– Decode will stall if resources not available 
– Rename source and destination registers 
– Check source registers for readiness 
–  Insert instruction into issue window+reorder buffer+memory buffer 
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Memory Instructions 
•  Split store instruction into two pieces during decode: 

–  Address calculation, store-address 
–  Data movement, store-data 

•  Allocate space in program order in memory buffers during 
decode 

•  Store instructions:  
–  Store-address calculates address and places in store buffer 
–  Store-data copies store value into store buffer 
–  Store-address and store-data execute independently out of issue window 
–  Stores only commit to data cache at commit point 

•  Load instructions: 
–  Load address calculation executes from window 
–  Load with completed effective address searches memory buffer 
–  Load instruction may have to wait in memory buffer for earlier store ops 

to resolve 



March 16, 2010 CS152, Spring 2010 8 

Issue Stage 

•  Writebacks from completion phase “wakeup” some 
instructions by causing their source operands to 
become ready in issue window 

–  In more speculative machines, might wake up waiting loads in 
memory buffer 

•  Need to “select” some instructions for issue 
–  Arbiter picks a subset of ready instructions for execution 
–  Example policies: random, lower-first, oldest-first, critical-first 

•  Instructions read out from issue window and sent to 
execution 
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Execute Stage 
•  Read operands from physical register file and/or 

bypass network from other functional units 
•  Execute on functional unit 
•  Write result value to physical register file (or store 

buffer if store) 
•  Produce exception status, write to reorder buffer 
•  Free slot in instruction window 



March 16, 2010 CS152, Spring 2010 10 

Commit Stage 

•  Read completed instructions in-order from 
reorder buffer 

–  (may need to wait for next oldest instruction to complete) 

•  If exception raised 
–  flush pipeline, jump to exception handler 

•  Otherwise, release resources: 
–  Free physical register used by last writer to same 

architectural register 
–  Free reorder buffer slot 
–  Free memory reorder buffer slot 
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Superscalar Control Logic Scaling 

•  Each issued instruction must somehow check against W*L 
instructions, i.e., growth in hardware ∝ W*(W*L) 

•  For in-order machines, L is related to pipeline latencies and check is 
done during issue (interlocks or scoreboard) 

•  For out-of-order machines, L also includes time spent in instruction 
buffers (instruction window or ROB), and check is done by 
broadcasting tags to waiting instructions at write back (completion) 

•  As W increases, larger instruction window is needed to find enough 
parallelism to keep machine busy => greater L 

=> Out-of-order control logic grows faster than W2 (~W3) 

Lifetime L 

Issue Group 

Previously 
Issued 

Instructions 

Issue Width W 
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Out-of-Order Control Complexity: 
MIPS R10000 

Control 
Logic 

[ SGI/MIPS 
Technologies 
Inc., 1995 ] 
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Check instruction 
dependencies 
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for (i=0, i< 
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Schedule 
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VLIW: Very Long Instruction Word 

•  Multiple operations packed into one instruction 
•  Each operation slot is for a fixed function 
•  Constant operation latencies are specified 
•  Architecture requires guarantee of: 

–  Parallelism within an instruction => no cross-operation RAW check 
– No data use before data ready => no data interlocks 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency Two Floating-Point Units, 

Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 
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VLIW Compiler Responsibilities 

•  Schedules to maximize parallel 
execution 

• Guarantees intra-instruction parallelism 

•  Schedules to avoid data hazards (no 
interlocks) 
– Typically separates operations with explicit NOPs 

15 
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Early VLIW Machines 
•  FPS AP120B (1976) 

–  scientific attached array processor 
–  first commercial wide instruction machine 
–  hand-coded vector math libraries using software pipelining and 

loop unrolling 

•  Multiflow Trace (1987) 
–  commercialization of ideas from Fisher’s Yale group including 

“trace scheduling” 
–  available in configurations with 7, 14, or 28 operations/instruction 
–  28 operations packed into a 1024-bit instruction word 

•  Cydrome Cydra-5 (1987) 
–  7 operations encoded in 256-bit instruction word 
–  rotating register file 
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Loop Execution 

for (i=0; i<N; i++) 

    B[i] = A[i] + C; 
Int1 Int 2 M1 M2 FP+ FPx 

loop: 

How many FP ops/cycle? 

ld  add r1 

fadd  

sd  add r2  bne  

1 fadd / 8 cycles = 0.125 

loop:  ld f1, 0(r1) 

          add r1, 8 

          fadd f2, f0, f1 

          sd f2, 0(r2) 

          add r2, 8 

          bne r1, r3, loop 

Compile 

Schedule 
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Loop Unrolling 
for (i=0; i<N; i++) 

    B[i] = A[i] + C; 

for (i=0; i<N; i+=4) 

{ 

    B[i]     = A[i] + C; 

    B[i+1] = A[i+1] + C; 

    B[i+2] = A[i+2] + C; 

    B[i+3] = A[i+3] + C; 

} 

Unroll inner loop to perform 4 
iterations at once 

Need to handle values of N that are not multiples 
of unrolling factor with final cleanup loop 
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Scheduling Loop Unrolled Code 

loop:  ld f1, 0(r1) 
           ld f2, 8(r1) 
           ld f3, 16(r1) 
           ld f4, 24(r1) 
           add r1, 32 
           fadd f5, f0, f1 
           fadd f6, f0, f2  
           fadd f7, f0, f3  
           fadd f8, f0, f4 
           sd f5, 0(r2) 
           sd f6, 8(r2) 
           sd f7, 16(r2) 
           sd f8, 24(r2) 

add r2, 32 
           bne r1, r3, loop 

Schedule 

Int1 Int 2 M1 M2 FP+ FPx 

loop: 

Unroll 4 ways 

ld f1 
ld f2 
ld f3 
ld f4 add r1 fadd f5 

fadd f6 
fadd f7 
fadd f8 

sd f5 
sd f6 
sd f7 
sd f8 add r2 bne 

How many FLOPS/cycle? 
4 fadds / 11 cycles = 0.36 
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Software Pipelining 

loop:  ld f1, 0(r1) 
           ld f2, 8(r1) 
           ld f3, 16(r1) 
           ld f4, 24(r1) 
           add r1, 32 
           fadd f5, f0, f1 
           fadd f6, f0, f2  
           fadd f7, f0, f3  
           fadd f8, f0, f4 
           sd f5, 0(r2) 
           sd f6, 8(r2) 
           sd f7, 16(r2) 
           add r2, 32 
           sd f8, -8(r2) 
           bne r1, r3, loop 

Int1 Int 2 M1 M2 FP+ FPx Unroll 4 ways first 
ld f1 
ld f2 
ld f3 
ld f4 

fadd f5 
fadd f6 
fadd f7 
fadd f8 

sd f5 
sd f6 
sd f7 
sd f8 

add r1 

add r2 
bne 

ld f1 
ld f2 
ld f3 
ld f4 

fadd f5 
fadd f6 
fadd f7 
fadd f8 

sd f5 
sd f6 
sd f7 
sd f8 

add r1 

add r2 
bne 

ld f1 
ld f2 
ld f3 
ld f4 

fadd f5 
fadd f6 
fadd f7 
fadd f8 

sd f5 

add r1 

loop: 
iterate 

prolog 

epilog 

How many FLOPS/cycle? 
4 fadds / 4 cycles = 1 
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Software Pipelining vs. 
Loop Unrolling 

time 

performance 

time 

performance 

Loop Unrolled 

Software Pipelined 

Startup overhead 

Wind-down overhead 

Loop Iteration 

Loop Iteration 

Software pipelining pays startup/wind-down 
costs only once per loop, not once per iteration 



March 16, 2010 CS152, Spring 2010 22 

CS152 Administrivia 
•  Quiz 3, Tuesday March 30 (first class back after 

spring break) 
–  All material on complex pipelining (L12-L14, plus review at start of 

L15), PS3, Lab 3 
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What if there are no loops? 

•  Branches limit basic block size in 
control-flow intensive irregular 
code 

•  Difficult to find ILP in individual 
basic blocks 

Basic block 
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Trace Scheduling [ Fisher,Ellis] 

•  Pick string of basic blocks, a trace, that 
represents most frequent branch path 

•  Use profiling feedback or compiler heuristics 
to find common branch paths  

•  Schedule whole “trace” at once 
•  Add fixup code to cope with branches 

jumping out of trace 
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Problems with “Classic” VLIW 

•  Object-code compatibility 
–  have to recompile all code for every machine, even for two machines in 

same generation 

•  Object code size 
–  instruction padding wastes instruction memory/cache 
–  loop unrolling/software pipelining replicates code 

•  Scheduling variable latency memory operations 
–  caches and/or memory bank conflicts impose statically unpredictable 

variability 

•  Knowing branch probabilities 
–  Profiling requires an significant extra step in build process 

•  Scheduling for statically unpredictable branches 
–  optimal schedule varies with branch path 
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VLIW Instruction Encoding 

•  Schemes to reduce effect of unused fields 
– Compressed format in memory, expand on I-cache refill 

»  used in Multiflow Trace 
»  introduces instruction addressing challenge 

– Mark parallel groups 
»  used in TMS320C6x DSPs, Intel IA-64 

–  Provide a single-op VLIW instruction 
»   Cydra-5 UniOp instructions 

Group 1 Group 2 Group 3 
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Rotating Register Files 

Problems: Scheduled loops require lots of registers,  
                Lots of duplicated code in prolog, epilog 

Solution: Allocate new set of registers for each loop iteration 
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Rotating Register File 

P0 
P1 
P2 
P3 
P4 
P5 
P6 
P7 

RRB=3 

+ R1 

Rotating Register Base (RRB) register points to base 
of current register set.  Value added on to logical 
register specifier to give physical register number.  
Usually, split into rotating and non-rotating 
registers. 
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Rotating Register File 
(Previous Loop Example) 

bloop sd f9, () fadd f5, f4, ... ld f1, () 

Three cycle load latency 
encoded as difference of 3 

in register specifier 
number (f4 - f1 = 3) 

Four cycle fadd latency 
encoded as difference of 4 

in register specifier 
number (f9 – f5 = 4) 

bloop sd P17, () fadd P13, P12, ld P9, () RRB=8 

bloop sd P16, () fadd P12, P11, ld P8, () RRB=7 

bloop sd P15, () fadd P11, P10, ld P7, () RRB=6 

bloop sd P14, () fadd P10, P9, ld P6, () RRB=5 

bloop sd P13, () fadd P9, P8, ld P5, () RRB=4 

bloop sd P12, () fadd P8, P7, ld P4, () RRB=3 

bloop sd P11, () fadd P7, P6, ld P3, () RRB=2 

bloop sd P10, () fadd P6, P5, ld P2, () RRB=1 
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Cydra-5: 
Memory Latency Register (MLR) 

Problem: Loads have variable latency 
Solution: Let software choose desired memory latency 

•  Compiler schedules code for maximum load-use 
distance 

•  Software sets MLR to latency that matches code 
schedule  

•  Hardware ensures that loads take exactly MLR cycles 
to return values into processor pipeline 

– Hardware buffers loads that return early 
– Hardware stalls processor if loads return late 
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