
March 16, 2010 CS152, Spring 2010

CS 152 Computer Architecture and
Engineering

 Lecture 15 - VLIW Machines and
Statically Scheduled ILP

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California at Berkeley

http://www.eecs.berkeley.edu/~krste!
http://inst.eecs.berkeley.edu/~cs152!

March 16, 2010 CS152, Spring 2010 2

Last time in Lecture 14
•  BTB allows prediction very early in pipeline

–  Also handles jump register, although return address stack handles
subroutine returns better

•  Unified physical register file machines remove data
values from ROB

–  All values only read and written during execution
–  Only register tags held in ROB
–  Allocate resources (ROB slot, destination physical register,

memory reorder queue location) during decode
–  Issue window can be separated from ROB and made smaller than

ROB (allocate in decode, free after instruction completes)
–  Free resources on commit

•  Speculative store buffer holds store values before
commit to allow load-store forwarding

•  Can execute later loads past earlier stores when
addresses known, or predicted no dependence

March 16, 2010 CS152, Spring 2010 3

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

March 16, 2010 CS152, Spring 2010 4

Speculative Store Buffer

•  On store execute:
–  mark entry valid and speculative, and save data and tag of instruction.

•  On store commit:
–  clear speculative bit and eventually move data to cache

•  On store abort:
–  clear valid bit

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

March 16, 2010 CS152, Spring 2010 5

Speculative Store Buffer

•  If data in both store buffer and cache, which should we use?
 Speculative store buffer

•  If same address in store buffer twice, which should we use?
 Youngest store older than load

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

March 16, 2010 CS152, Spring 2010 6

Instruction Flow in Unified Physical
Register File Pipeline

•  Fetch
– Get instruction bits from current guess at PC, place in fetch buffer
– Update PC using sequential address or branch predictor (BTB)

•  Decode/Rename
–  Take instruction from fetch buffer
–  Allocate resources to execute instruction:

» Destination physical register, if instruction writes a register
»  Entry in reorder buffer to provide in-order commit
»  Entry in issue window to wait for execution
»  Entry in memory buffer, if load or store

– Decode will stall if resources not available
– Rename source and destination registers
– Check source registers for readiness
–  Insert instruction into issue window+reorder buffer+memory buffer

March 16, 2010 CS152, Spring 2010 7

Memory Instructions
•  Split store instruction into two pieces during decode:

–  Address calculation, store-address
–  Data movement, store-data

•  Allocate space in program order in memory buffers during
decode

•  Store instructions:
–  Store-address calculates address and places in store buffer
–  Store-data copies store value into store buffer
–  Store-address and store-data execute independently out of issue window
–  Stores only commit to data cache at commit point

•  Load instructions:
–  Load address calculation executes from window
–  Load with completed effective address searches memory buffer
–  Load instruction may have to wait in memory buffer for earlier store ops

to resolve

March 16, 2010 CS152, Spring 2010 8

Issue Stage

•  Writebacks from completion phase “wakeup” some
instructions by causing their source operands to
become ready in issue window

–  In more speculative machines, might wake up waiting loads in
memory buffer

•  Need to “select” some instructions for issue
–  Arbiter picks a subset of ready instructions for execution
–  Example policies: random, lower-first, oldest-first, critical-first

•  Instructions read out from issue window and sent to
execution

March 16, 2010 CS152, Spring 2010 9

Execute Stage
•  Read operands from physical register file and/or

bypass network from other functional units
•  Execute on functional unit
•  Write result value to physical register file (or store

buffer if store)
•  Produce exception status, write to reorder buffer
•  Free slot in instruction window

March 16, 2010 CS152, Spring 2010 10

Commit Stage

•  Read completed instructions in-order from
reorder buffer

–  (may need to wait for next oldest instruction to complete)

•  If exception raised
–  flush pipeline, jump to exception handler

•  Otherwise, release resources:
–  Free physical register used by last writer to same

architectural register
–  Free reorder buffer slot
–  Free memory reorder buffer slot

March 16, 2010 CS152, Spring 2010 11

Superscalar Control Logic Scaling

•  Each issued instruction must somehow check against W*L
instructions, i.e., growth in hardware ∝ W*(W*L)

•  For in-order machines, L is related to pipeline latencies and check is
done during issue (interlocks or scoreboard)

•  For out-of-order machines, L also includes time spent in instruction
buffers (instruction window or ROB), and check is done by
broadcasting tags to waiting instructions at write back (completion)

•  As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Out-of-order control logic grows faster than W2 (~W3)

Lifetime L

Issue Group

Previously
Issued

Instructions

Issue Width W

March 16, 2010 CS152, Spring 2010 12

Out-of-Order Control Complexity:
MIPS R10000

Control
Logic

[SGI/MIPS
Technologies
Inc., 1995]

March 16, 2010 CS152, Spring 2010 13

Check instruction
dependencies

Superscalar processor

Sequential ISA Bottleneck

a = foo(b);

for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

March 16, 2010 CS152, Spring 2010 14

VLIW: Very Long Instruction Word

•  Multiple operations packed into one instruction
•  Each operation slot is for a fixed function
•  Constant operation latencies are specified
•  Architecture requires guarantee of:

–  Parallelism within an instruction => no cross-operation RAW check
– No data use before data ready => no data interlocks

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

March 16, 2010 CS152, Spring 2010

VLIW Compiler Responsibilities

•  Schedules to maximize parallel
execution

• Guarantees intra-instruction parallelism

•  Schedules to avoid data hazards (no
interlocks)
– Typically separates operations with explicit NOPs

15

March 16, 2010 CS152, Spring 2010 16

Early VLIW Machines
•  FPS AP120B (1976)

–  scientific attached array processor
–  first commercial wide instruction machine
–  hand-coded vector math libraries using software pipelining and

loop unrolling

•  Multiflow Trace (1987)
–  commercialization of ideas from Fisher’s Yale group including

“trace scheduling”
–  available in configurations with 7, 14, or 28 operations/instruction
–  28 operations packed into a 1024-bit instruction word

•  Cydrome Cydra-5 (1987)
–  7 operations encoded in 256-bit instruction word
–  rotating register file

March 16, 2010 CS152, Spring 2010 17

Loop Execution

for (i=0; i<N; i++)

 B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop:

How many FP ops/cycle?

ld add r1

fadd

sd add r2 bne

1 fadd / 8 cycles = 0.125

loop: ld f1, 0(r1)

 add r1, 8

 fadd f2, f0, f1

 sd f2, 0(r2)

 add r2, 8

 bne r1, r3, loop

Compile

Schedule

March 16, 2010 CS152, Spring 2010 18

Loop Unrolling
for (i=0; i<N; i++)

 B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

 B[i] = A[i] + C;

 B[i+1] = A[i+1] + C;

 B[i+2] = A[i+2] + C;

 B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

March 16, 2010 CS152, Spring 2010 19

Scheduling Loop Unrolled Code

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 sd f8, 24(r2)

add r2, 32
 bne r1, r3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

ld f1
ld f2
ld f3
ld f4 add r1 fadd f5

fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8 add r2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

March 16, 2010 CS152, Spring 2010 20

Software Pipelining

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 add r2, 32
 sd f8, -8(r2)
 bne r1, r3, loop

Int1 Int 2 M1 M2 FP+ FPx Unroll 4 ways first
ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5

add r1

loop:
iterate

prolog

epilog

How many FLOPS/cycle?
4 fadds / 4 cycles = 1

March 16, 2010 CS152, Spring 2010 21

Software Pipelining vs.
Loop Unrolling

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

March 16, 2010 CS152, Spring 2010 22

CS152 Administrivia
•  Quiz 3, Tuesday March 30 (first class back after

spring break)
–  All material on complex pipelining (L12-L14, plus review at start of

L15), PS3, Lab 3

March 16, 2010 CS152, Spring 2010 23

What if there are no loops?

•  Branches limit basic block size in
control-flow intensive irregular
code

•  Difficult to find ILP in individual
basic blocks

Basic block

March 16, 2010 CS152, Spring 2010 24

Trace Scheduling [Fisher,Ellis]

•  Pick string of basic blocks, a trace, that
represents most frequent branch path

•  Use profiling feedback or compiler heuristics
to find common branch paths

•  Schedule whole “trace” at once
•  Add fixup code to cope with branches

jumping out of trace

March 16, 2010 CS152, Spring 2010 25

Problems with “Classic” VLIW

•  Object-code compatibility
–  have to recompile all code for every machine, even for two machines in

same generation

•  Object code size
–  instruction padding wastes instruction memory/cache
–  loop unrolling/software pipelining replicates code

•  Scheduling variable latency memory operations
–  caches and/or memory bank conflicts impose statically unpredictable

variability

•  Knowing branch probabilities
–  Profiling requires an significant extra step in build process

•  Scheduling for statically unpredictable branches
–  optimal schedule varies with branch path

March 16, 2010 CS152, Spring 2010 26

VLIW Instruction Encoding

•  Schemes to reduce effect of unused fields
– Compressed format in memory, expand on I-cache refill

»  used in Multiflow Trace
»  introduces instruction addressing challenge

– Mark parallel groups
»  used in TMS320C6x DSPs, Intel IA-64

–  Provide a single-op VLIW instruction
»  Cydra-5 UniOp instructions

Group 1 Group 2 Group 3

March 16, 2010 CS152, Spring 2010 27

Rotating Register Files

Problems: Scheduled loops require lots of registers,
 Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration

March 16, 2010 CS152, Spring 2010 28

Rotating Register File

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+ R1

Rotating Register Base (RRB) register points to base
of current register set. Value added on to logical
register specifier to give physical register number.
Usually, split into rotating and non-rotating
registers.

March 16, 2010 CS152, Spring 2010 29

Rotating Register File
(Previous Loop Example)

bloop sd f9, () fadd f5, f4, ... ld f1, ()

Three cycle load latency
encoded as difference of 3

in register specifier
number (f4 - f1 = 3)

Four cycle fadd latency
encoded as difference of 4

in register specifier
number (f9 – f5 = 4)

bloop sd P17, () fadd P13, P12, ld P9, () RRB=8

bloop sd P16, () fadd P12, P11, ld P8, () RRB=7

bloop sd P15, () fadd P11, P10, ld P7, () RRB=6

bloop sd P14, () fadd P10, P9, ld P6, () RRB=5

bloop sd P13, () fadd P9, P8, ld P5, () RRB=4

bloop sd P12, () fadd P8, P7, ld P4, () RRB=3

bloop sd P11, () fadd P7, P6, ld P3, () RRB=2

bloop sd P10, () fadd P6, P5, ld P2, () RRB=1

March 16, 2010 CS152, Spring 2010 30

Cydra-5:
Memory Latency Register (MLR)

Problem: Loads have variable latency
Solution: Let software choose desired memory latency

•  Compiler schedules code for maximum load-use
distance

•  Software sets MLR to latency that matches code
schedule

•  Hardware ensures that loads take exactly MLR cycles
to return values into processor pipeline

– Hardware buffers loads that return early
– Hardware stalls processor if loads return late

March 16, 2010 CS152, Spring 2010 31

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

