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Last Time Lecture 15: VLIW 
•  In a classic VLIW, compiler is responsible for 

avoiding all hazards -> simple hardware, complex 
compiler. Later VLIWs added more dynamic 
hardware interlocks 

•  Use loop unrolling and software pipelining for loops, 
trace scheduling for more irregular code 

•  Static scheduling difficult in presence of 
unpredictable branches and variable latency memory 
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Intel EPIC IA-64 

•  EPIC is the style of architecture (cf. CISC, RISC) 
–  Explicitly Parallel Instruction Computing 

•  IA-64 is Intel’s chosen ISA (cf. x86, MIPS) 
–  IA-64 = Intel Architecture 64-bit 
–  An object-code compatible VLIW 

•  Itanium (aka Merced) is first implementation (cf. 8086) 
–  First customer shipment expected 1997 (actually 2001) 
–  McKinley, second implementation shipped in 2002 
–  Recent version, Tukwila 2008, quad-cores, 65nm (not shipping until 

2010?) 
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Quad Core Itanium “Tukwila” [Intel 2008] 

•  4 cores 
•  6MB $/core, 24MB $ total 
•  ~2.0 GHz 
•  698mm2 in 65nm CMOS!!!!! 
•  170W 
•  Over 2 billion transistor 
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IA-64 Instruction Format 

•  Template bits describe grouping of these 
instructions with others in adjacent bundles 

•  Each group contains instructions that can execute 
in parallel 

Instruction 2 Instruction 1 Instruction 0 Template 

128-bit instruction bundle 

group i group i+1 group i+2 group i-1 

bundle j bundle j+1 bundle j+2 bundle j-1 
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IA-64 Registers 

•  128 General Purpose 64-bit Integer Registers 
•  128 General Purpose 64/80-bit Floating Point 

Registers 
•  64 1-bit Predicate Registers 

•  GPRs rotate to reduce code size for software 
pipelined loops 
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IA-64 Predicated Execution 
Problem: Mispredicted branches limit ILP 
Solution: Eliminate hard to predict branches with predicated execution 

–  Almost all IA-64 instructions can be executed conditionally under predicate 
–  Instruction becomes NOP if predicate register false 

Inst 1 
Inst 2 
br a==b, b2 

Inst 3 
Inst 4 
br b3 

Inst 5 
Inst 6 

Inst 7 
Inst 8 

b0: 

b1: 

b2: 

b3: 

if 

else 

then 

Four basic blocks 

Inst 1 
Inst 2 
p1,p2 <- cmp(a==b) 
(p1) Inst 3     ||   (p2) Inst 5 
(p1) Inst 4     ||   (p2) Inst 6 
Inst 7 
Inst 8 

Predication 

One basic block 

Mahlke et al, ISCA95: On average 
>50% branches removed 
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Fully Bypassed Datapath 

ASrc 
IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 
Add 

IR ALU 

Imm 
Ext 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 

PC for JAL, ... 

BSrc 

Where does predication fit in? 
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IA-64 Speculative Execution 

Problem: Branches restrict compiler code motion 

Inst 1 
Inst 2 
br a==b, b2 

Load r1 
Use r1 
Inst 3 

Can’t move load above branch 
because might cause spurious 

exception 

Load.s r1 
Inst 1 
Inst 2 
br a==b, b2 

Chk.s r1 
Use r1 
Inst 3 

Speculative load 
never causes 

exception, but sets 
“poison” bit on 

destination register 

Check for exception in 
original home block 

jumps to fixup code if 
exception detected 

Particularly useful for scheduling long latency loads early 

Solution: Speculative operations that don’t cause exceptions 
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IA-64 Data Speculation 

Problem: Possible memory hazards limit code scheduling 

Requires associative hardware in address check table 

Inst 1 
Inst 2 
Store 

Load r1 
Use r1 
Inst 3 

Can’t move load above store 
because store might be to same 

address 

Load.a r1 
Inst 1 
Inst 2 
Store 

Load.c 
Use r1 
Inst 3 

Data speculative load 
adds address to 

address check table 

Store invalidates any 
matching loads in 

address check table 

Check if load invalid (or 
missing), jump to fixup 

code if so 

Solution: Hardware to check pointer hazards 
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Limits of Static Scheduling 

•  Unpredictable branches 
•  Variable memory latency (unpredictable 

cache misses) 
•  Code size explosion 
•  Compiler complexity 

Despite several attempts, VLIW has failed in 
general-purpose computing arena. 

Successful in embedded DSP market. 
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Supercomputers 

Definition of a supercomputer: 
•  Fastest machine in world at given task 
•  A device to turn a compute-bound problem into an I/O bound 

problem  
•  Any machine costing $30M+ 
•  Any machine designed by Seymour Cray 

CDC6600 (Cray, 1964) regarded as first supercomputer 
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Supercomputer Applications 

 Typical application areas 
•  Military research (nuclear weapons, cryptography) 
•  Scientific research 
•  Weather forecasting 
•  Oil exploration 
•  Industrial design (car crash simulation) 
•  Bioinformatics 
•  Cryptography 

All involve huge computations on large data sets 

In 70s-80s, Supercomputer ≡ Vector Machine 
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Vector Supercomputers 

Epitomized by Cray-1, 1976: 

•  Scalar Unit 
–  Load/Store Architecture 

•  Vector Extension 
–  Vector Registers 
–  Vector Instructions 

•  Implementation 
–  Hardwired Control 
–  Highly Pipelined Functional Units 
–  Interleaved Memory System 
–  No Data Caches 
–  No Virtual Memory 
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Cray-1 (1976) 

Single Port 
Memory 

16 banks of 64-
bit words 

+  
8-bit SECDED 

80MW/sec data 
load/store 

320MW/sec 
instruction 
buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 
T Regs 

(A0) 

( (Ah) + j k m ) 

64  
B Regs 

S0 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 
FP Mul 
FP Recip 

Int Add 
Int Logic 
Int Shift 
Pop Cnt 

Sj 

Si 

Sk 

Addr Add 
Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element 
Vector Registers 
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Vector Programming Model 

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

v1 
Vector Load and 
Store Instructions 

LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 
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Vector Code Example 

# Scalar Code 
  LI R4, 64 
loop: 
  L.D F0, 0(R1) 
  L.D F2, 0(R2) 
  ADD.D F4, F2, F0 
  S.D F4, 0(R3) 
  DADDIU R1, 8 
  DADDIU R2, 8 
  DADDIU R3, 8 
  DSUBIU R4, 1 
  BNEZ R4, loop 

# Vector Code 
  LI VLR, 64  
  LV V1, R1 
  LV V2, R2 
  ADDV.D V3, V1, V2 
  SV V3, R3 

# C code 
for (i=0; i<64; i++) 
  C[i] = A[i] + B[i]; 



March 18, 2010 CS152, Spring 2010 
18 

Vector Instruction Set Advantages 

•  Compact 
–  one short instruction encodes N operations 

•  Expressive, tells hardware that these N operations: 
–  are independent 
–  use the same functional unit 
–  access disjoint registers 
–  access registers in same pattern as previous instructions 
–  access a contiguous block of memory 

 (unit-stride load/store) 
–  access memory in a known pattern  

(strided load/store)  
•  Scalable 

–  can run same code on more parallel pipelines (lanes) 
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Vector Arithmetic Execution 

•  Use deep pipeline (=> fast 
clock) to execute element 
operations 

•  Simplifies control of deep 
pipeline because elements in 
vector are independent (=> no 
hazards!)  

V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 
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Vector Instruction Execution 
ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 
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Vector Memory System 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+

Base Stride Vector Registers 

Memory Banks 

Address 
Generator 

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency 

•  Bank busy time: Time before bank ready to accept next request 



March 18, 2010 CS152, Spring 2010 
22 

Vector Unit Structure 

Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 
0, 4, 8, … 

Elements 
1, 5, 9, … 

Elements 
2, 6, 10, … 

Elements 
3, 7, 11, … 
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T0 Vector Microprocessor (UCB/ICSI, 1995) 

Lane Vector register 
elements striped 

over lanes 

[0] 
[8] 
[16] 
[24] 

[1] 
[9] 
[17] 
[25] 

[2] 
[10] 
[18] 
[26] 

[3] 
[11] 
[19] 
[27] 

[4] 
[12] 
[20] 
[28] 

[5] 
[13] 
[21] 
[29] 

[6] 
[14] 
[22] 
[30] 

[7] 
[15] 
[23] 
[31] 
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load 

Vector Instruction Parallelism 

Can overlap execution of multiple vector instructions 
–  example machine has 32 elements per vector register and 8 lanes 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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CS152 Administrivia 
•  Quiz 5, Thursday April 23 
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Vector Chaining 
•  Vector version of register bypassing 

–  introduced with Cray-1 

Memory 

V1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 
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Vector Chaining Advantage 

•  With chaining, can start dependent instruction as soon as first result 
appears 

Load 

Mul 

Add 

Load 

Mul 

Add Time 

•  Without chaining, must wait for last element of result to be 
written before starting dependent instruction 
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Vector Startup 
Two components of vector startup penalty 

–  functional unit latency (time through pipeline) 
–  dead time or recovery time (time before another vector instruction can 

start down pipeline) 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

Functional Unit Latency 

Dead Time 

First Vector Instruction 

Second Vector Instruction 

Dead Time 
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Dead Time and Short Vectors 

Cray C90, Two lanes 
4 cycle dead time 

Maximum efficiency 94% 
with 128 element vectors 

4 cycles dead time T0, Eight lanes 
No dead time 

100% efficiency with 8 element 
vectors 

No dead time 

64 cycles active 
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Vector Memory-Memory versus Vector Register 
Machines 

•  Vector memory-memory instructions hold all vector operands in 
main memory 

•  The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), 
were memory-memory machines 

•  Cray-1 (’76) was first vector register machine 

for (i=0; i<N; i++) 
{ 
  C[i] = A[i] + B[i]; 
  D[i] = A[i] - B[i]; 
} 

Example Source Code ADDV C, A, B 
SUBV D, A, B 

Vector Memory-Memory Code 

LV V1, A 
LV V2, B 
ADDV V3, V1, V2 
SV V3, C 
SUBV V4, V1, V2 
SV V4, D 

Vector Register Code 
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Vector Memory-Memory vs. Vector Register 
Machines 

•  Vector memory-memory architectures (VMMA) require greater main 
memory bandwidth, why? 

–  All operands must be read in and out of memory 
•  VMMAs make if difficult to overlap execution of multiple vector 

operations, why?  
–  Must check dependencies on memory addresses 

•  VMMAs incur greater startup latency 
–  Scalar code was faster on CDC Star-100 for vectors < 100 elements 
–  For Cray-1, vector/scalar breakeven point was around 2 elements 

⇒ Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector 
machines since Cray-1 have had vector register architectures 

(we ignore vector memory-memory from now on) 
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