
March 18, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 16: Vector Computers

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

March 18, 2010 CS152, Spring 2010
2

Last Time Lecture 15: VLIW
•  In a classic VLIW, compiler is responsible for

avoiding all hazards -> simple hardware, complex
compiler. Later VLIWs added more dynamic
hardware interlocks

•  Use loop unrolling and software pipelining for loops,
trace scheduling for more irregular code

•  Static scheduling difficult in presence of
unpredictable branches and variable latency memory

March 18, 2010 CS152, Spring 2010 3

Intel EPIC IA-64

•  EPIC is the style of architecture (cf. CISC, RISC)
–  Explicitly Parallel Instruction Computing

•  IA-64 is Intel’s chosen ISA (cf. x86, MIPS)
–  IA-64 = Intel Architecture 64-bit
–  An object-code compatible VLIW

•  Itanium (aka Merced) is first implementation (cf. 8086)
–  First customer shipment expected 1997 (actually 2001)
–  McKinley, second implementation shipped in 2002
–  Recent version, Tukwila 2008, quad-cores, 65nm (not shipping until

2010?)

March 18, 2010 CS152, Spring 2010 4

Quad Core Itanium “Tukwila” [Intel 2008]

•  4 cores
•  6MB $/core, 24MB $ total
•  ~2.0 GHz
•  698mm2 in 65nm CMOS!!!!!
•  170W
•  Over 2 billion transistor

March 18, 2010 CS152, Spring 2010 5

IA-64 Instruction Format

•  Template bits describe grouping of these
instructions with others in adjacent bundles

•  Each group contains instructions that can execute
in parallel

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2 group i-1

bundle j bundle j+1 bundle j+2 bundle j-1

March 18, 2010 CS152, Spring 2010 6

IA-64 Registers

•  128 General Purpose 64-bit Integer Registers
•  128 General Purpose 64/80-bit Floating Point

Registers
•  64 1-bit Predicate Registers

•  GPRs rotate to reduce code size for software
pipelined loops

March 18, 2010 CS152, Spring 2010 7

IA-64 Predicated Execution
Problem: Mispredicted branches limit ILP
Solution: Eliminate hard to predict branches with predicated execution

–  Almost all IA-64 instructions can be executed conditionally under predicate
–  Instruction becomes NOP if predicate register false

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2
p1,p2 <- cmp(a==b)
(p1) Inst 3 || (p2) Inst 5
(p1) Inst 4 || (p2) Inst 6
Inst 7
Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On average
>50% branches removed

March 18, 2010 CS152, Spring 2010 8

Fully Bypassed Datapath

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Where does predication fit in?

March 18, 2010 CS152, Spring 2010 9

IA-64 Speculative Execution

Problem: Branches restrict compiler code motion

Inst 1
Inst 2
br a==b, b2

Load r1
Use r1
Inst 3

Can’t move load above branch
because might cause spurious

exception

Load.s r1
Inst 1
Inst 2
br a==b, b2

Chk.s r1
Use r1
Inst 3

Speculative load
never causes

exception, but sets
“poison” bit on

destination register

Check for exception in
original home block

jumps to fixup code if
exception detected

Particularly useful for scheduling long latency loads early

Solution: Speculative operations that don’t cause exceptions

March 18, 2010 CS152, Spring 2010 10

IA-64 Data Speculation

Problem: Possible memory hazards limit code scheduling

Requires associative hardware in address check table

Inst 1
Inst 2
Store

Load r1
Use r1
Inst 3

Can’t move load above store
because store might be to same

address

Load.a r1
Inst 1
Inst 2
Store

Load.c
Use r1
Inst 3

Data speculative load
adds address to

address check table

Store invalidates any
matching loads in

address check table

Check if load invalid (or
missing), jump to fixup

code if so

Solution: Hardware to check pointer hazards

March 18, 2010 CS152, Spring 2010 11

Limits of Static Scheduling

•  Unpredictable branches
•  Variable memory latency (unpredictable

cache misses)
•  Code size explosion
•  Compiler complexity

Despite several attempts, VLIW has failed in
general-purpose computing arena.

Successful in embedded DSP market.

March 18, 2010 CS152, Spring 2010
12

Supercomputers

Definition of a supercomputer:
•  Fastest machine in world at given task
•  A device to turn a compute-bound problem into an I/O bound

problem
•  Any machine costing $30M+
•  Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

March 18, 2010 CS152, Spring 2010
13

Supercomputer Applications

 Typical application areas
•  Military research (nuclear weapons, cryptography)
•  Scientific research
•  Weather forecasting
•  Oil exploration
•  Industrial design (car crash simulation)
•  Bioinformatics
•  Cryptography

All involve huge computations on large data sets

In 70s-80s, Supercomputer ≡ Vector Machine

March 18, 2010 CS152, Spring 2010 14

Vector Supercomputers

Epitomized by Cray-1, 1976:

•  Scalar Unit
–  Load/Store Architecture

•  Vector Extension
–  Vector Registers
–  Vector Instructions

•  Implementation
–  Hardwired Control
–  Highly Pipelined Functional Units
–  Interleaved Memory System
–  No Data Caches
–  No Virtual Memory

March 18, 2010 CS152, Spring 2010
15

Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element
Vector Registers

March 18, 2010 CS152, Spring 2010
16

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

March 18, 2010 CS152, Spring 2010
17

Vector Code Example

Scalar Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

March 18, 2010 CS152, Spring 2010
18

Vector Instruction Set Advantages

•  Compact
–  one short instruction encodes N operations

•  Expressive, tells hardware that these N operations:
–  are independent
–  use the same functional unit
–  access disjoint registers
–  access registers in same pattern as previous instructions
–  access a contiguous block of memory

 (unit-stride load/store)
–  access memory in a known pattern

(strided load/store)
•  Scalable

–  can run same code on more parallel pipelines (lanes)

March 18, 2010 CS152, Spring 2010
19

Vector Arithmetic Execution

•  Use deep pipeline (=> fast
clock) to execute element
operations

•  Simplifies control of deep
pipeline because elements in
vector are independent (=> no
hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

March 18, 2010 CS152, Spring 2010
20

Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

March 18, 2010 CS152, Spring 2010
21

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

•  Bank busy time: Time before bank ready to accept next request

March 18, 2010 CS152, Spring 2010
22

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

March 18, 2010 CS152, Spring 2010
23

T0 Vector Microprocessor (UCB/ICSI, 1995)

Lane Vector register
elements striped

over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

March 18, 2010 CS152, Spring 2010
24

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
–  example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

March 18, 2010 CS152, Spring 2010
25

CS152 Administrivia
•  Quiz 5, Thursday April 23

March 18, 2010 CS152, Spring 2010
26

Vector Chaining
•  Vector version of register bypassing

–  introduced with Cray-1

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

March 18, 2010 CS152, Spring 2010
27

Vector Chaining Advantage

•  With chaining, can start dependent instruction as soon as first result
appears

Load

Mul

Add

Load

Mul

Add Time

•  Without chaining, must wait for last element of result to be
written before starting dependent instruction

March 18, 2010 CS152, Spring 2010
28

Vector Startup
Two components of vector startup penalty

–  functional unit latency (time through pipeline)
–  dead time or recovery time (time before another vector instruction can

start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

March 18, 2010 CS152, Spring 2010
29

Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

March 18, 2010 CS152, Spring 2010
30

Vector Memory-Memory versus Vector Register
Machines

•  Vector memory-memory instructions hold all vector operands in
main memory

•  The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines

•  Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

March 18, 2010 CS152, Spring 2010
31

Vector Memory-Memory vs. Vector Register
Machines

•  Vector memory-memory architectures (VMMA) require greater main
memory bandwidth, why?

–  All operands must be read in and out of memory
•  VMMAs make if difficult to overlap execution of multiple vector

operations, why?
–  Must check dependencies on memory addresses

•  VMMAs incur greater startup latency
–  Scalar code was faster on CDC Star-100 for vectors < 100 elements
–  For Cray-1, vector/scalar breakeven point was around 2 elements

⇒ Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector
machines since Cray-1 have had vector register architectures

(we ignore vector memory-memory from now on)

March 18, 2010 CS152, Spring 2010
32

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

