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Last Time: Vector Supercomputers 

Epitomized by Cray-1, 1976: 

•  Scalar Unit 
–  Load/Store Architecture 

•  Vector Extension 
–  Vector Registers 
–  Vector Instructions 

•  Implementation 
–  Hardwired Control 
–  Highly Pipelined Functional Units 
–  Interleaved Memory System 
–  No Data Caches 
–  No Virtual Memory 
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Vector Programming Model 

+ + + + + + 
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Vector Code Example 

# Scalar Code 
  LI R4, 64 
loop: 
  L.D F0, 0(R1) 
  L.D F2, 0(R2) 
  ADD.D F4, F2, F0 
  S.D F4, 0(R3) 
  DADDIU R1, 8 
  DADDIU R2, 8 
  DADDIU R3, 8 
  DSUBIU R4, 1 
  BNEZ R4, loop 

# Vector Code 
  LI VLR, 64  
  LV V1, R1 
  LV V2, R2 
  ADDV.D V3, V1, V2 
  SV V3, R3 

# C code 
for (i=0; i<64; i++) 
  C[i] = A[i] + B[i]; 
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Vector Instruction Set Advantages 

•  Compact 
–  one short instruction encodes N operations 

•  Expressive, tells hardware that these N operations: 
–  are independent 
–  use the same functional unit 
–  access disjoint registers 
–  access registers in same pattern as previous instructions 
–  access a contiguous block of memory 

 (unit-stride load/store) 
–  access memory in a known pattern  

(strided load/store)  
•  Scalable 

–  can run same code on more parallel pipelines (lanes) 
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Vector Arithmetic Execution 

•  Use deep pipeline (=> fast 
clock) to execute element 
operations 

•  Simplifies control of deep 
pipeline because elements in 
vector are independent (=> no 
hazards!)  

V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 
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Vector Instruction Execution 
ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 
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C[6] 

C[10] 

C[2] 

A[14] B[14] 
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C[7] 
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A[27] B[27] 

Execution using 
four pipelined 
functional units 
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Vector Memory System 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+

Base Stride Vector Registers 

Memory Banks 

Address 
Generator 

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency 

•  Bank busy time: Time before bank ready to accept next request 
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Vector Unit Structure 

Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 
0, 4, 8, … 

Elements 
1, 5, 9, … 

Elements 
2, 6, 10, … 

Elements 
3, 7, 11, … 
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T0 Vector Microprocessor (UCB/ICSI, 1995) 

Lane Vector register 
elements striped 

over lanes 
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load 

Vector Instruction Parallelism 

Can overlap execution of multiple vector instructions 
–  example machine has 32 elements per vector register and 8 lanes 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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Vector Chaining 
•  Vector version of register bypassing 

–  introduced with Cray-1 

Memory 

V1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 
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Vector Chaining Advantage 

•  With chaining, can start dependent instruction as soon as first result 
appears 

Load 

Mul 

Add 

Load 

Mul 

Add Time 

•  Without chaining, must wait for last element of result to be 
written before starting dependent instruction 
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Vector Startup 
Two components of vector startup penalty 

–  functional unit latency (time through pipeline) 
–  dead time or recovery time (time before another vector instruction can 

start down pipeline) 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

Functional Unit Latency 

Dead Time 

First Vector Instruction 

Second Vector Instruction 

Dead Time 
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Dead Time and Short Vectors 

Cray C90, Two lanes 
4 cycle dead time 

Maximum efficiency 94% 
with 128 element vectors 

4 cycles dead time T0, Eight lanes 
No dead time 

100% efficiency with 8 element 
vectors 

No dead time 

64 cycles active 
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Vector Memory-Memory versus Vector Register 
Machines 

•  Vector memory-memory instructions hold all vector operands in 
main memory 

•  The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), 
were memory-memory machines 

•  Cray-1 (’76) was first vector register machine 

for (i=0; i<N; i++) 
{ 
  C[i] = A[i] + B[i]; 
  D[i] = A[i] - B[i]; 
} 

Example Source Code ADDV C, A, B 
SUBV D, A, B 

Vector Memory-Memory Code 

LV V1, A 
LV V2, B 
ADDV V3, V1, V2 
SV V3, C 
SUBV V4, V1, V2 
SV V4, D 

Vector Register Code 
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Vector Memory-Memory vs. Vector Register 
Machines 

•  Vector memory-memory architectures (VMMA) require greater main 
memory bandwidth, why? 

–  All operands must be read in and out of memory 
•  VMMAs make if difficult to overlap execution of multiple vector 

operations, why?  
–  Must check dependencies on memory addresses 

•  VMMAs incur greater startup latency 
–  Scalar code was faster on CDC Star-100 for vectors < 100 elements 
–  For Cray-1, vector/scalar breakeven point was around 2 elements 

⇒ Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector 
machines since Cray-1 have had vector register architectures 

(we ignore vector memory-memory from now on) 
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CS152 Administrivia 
•  Quiz 4, Tue Apr 13 
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Automatic Code Vectorization 
for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a massive compile-time 
reordering of operation sequencing 

⇒ requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Ti
m

e 
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Vector Stripmining 
Problem: Vector registers have finite length 
Solution: Break loops into pieces that fit in registers, “Stripmining” 

 ANDI R1, N, 63   # N mod 64 
 MTC1 VLR, R1     # Do remainder 
loop: 
 LV V1, RA 
 DSLL R2, R1, 3  # Multiply by 8       
 DADDU RA, RA, R2 # Bump pointer 
 LV V2, RB 
 DADDU RB, RB, R2  
 ADDV.D V3, V1, V2 
 SV V3, RC 
 DADDU RC, RC, R2 
 DSUBU N, N, R1 # Subtract elements 
 LI R1, 64 
 MTC1 VLR, R1   # Reset full length 
 BGTZ N, loop   # Any more to do? 

for (i=0; i<N; i++) 
    C[i] = A[i]+B[i]; 

+ 

+ 

+ 

A B C 

64 elements 

Remainder 
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Vector Conditional Execution 
Problem: Want to vectorize loops with conditional code: 

for (i=0; i<N; i++) 
    if (A[i]>0) then 
        A[i] = B[i]; 

Solution: Add vector mask (or flag) registers 
–  vector version of predicate registers, 1 bit per element 

…and maskable vector instructions 
–  vector operation becomes NOP at elements where mask bit is clear 

Code example: 
CVM             # Turn on all elements  
LV vA, rA       # Load entire A vector 
SGTVS.D vA, F0  # Set bits in mask register where A>0 
LV vA, rB       # Load B vector into A under mask 
SV vA, rA       # Store A back to memory under mask 
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Masked Vector Instructions 

C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

Density-Time Implementation 
–  scan mask vector and only execute 

elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

Simple Implementation 
–  execute all N operations, turn off result 

writeback according to mask 
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Vector Reductions 

Problem: Loop-carried dependence on reduction variables 
sum = 0; 
for (i=0; i<N; i++) 
    sum += A[i];  # Loop-carried dependence on sum 

Solution: Re-associate operations if possible, use binary tree to perform 
reduction 
# Rearrange as: 
sum[0:VL-1] = 0                 # Vector of VL partial sums 
for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks 
    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum 
# Now have VL partial sums in one vector register 
do { 
    VL = VL/2;                    # Halve vector length 
    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials 
} while (VL>1) 
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Vector Scatter/Gather 

Want to vectorize loops with indirect accesses: 
for (i=0; i<N; i++) 
    A[i] = B[i] + C[D[i]] 

Indexed load instruction (Gather) 
LV vD, rD       # Load indices in D vector 
LVI vC, rC, vD  # Load indirect from rC base 
LV vB, rB       # Load B vector 
ADDV.D vA,vB,vC # Do add 
SV vA, rA       # Store result 
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Vector Scatter/Gather 

Scatter example: 
for (i=0; i<N; i++) 
    A[B[i]]++; 

Is following a correct translation? 
LV vB, rB       # Load indices in B vector 
LVI vA, rA, vB  # Gather initial A values 
ADDV vA, vA, 1  # Increment 
SVI vA, rA, vB  # Scatter incremented values 
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A Modern Vector Super: NEC SX-9 (2008) 
•  65nm CMOS technology 
• Vector unit (3.2 GHz) 

– 8 foreground VRegs + 64 background 
VRegs (256x64-bit elements/VReg) 

– 64-bit functional units: 2 multiply, 2 add, 1 
divide/sqrt, 1 logical, 1 mask unit 

– 8 lanes (32+ FLOPS/cycle, 100+ GFLOPS 
peak per CPU) 

– 1 load or store unit (8 x 8-byte accesses/
cycle)  

• Scalar unit (1.6 GHz) 
– 4-way superscalar with out-of-order and 

speculative execution 
– 64KB I-cache and 64KB data cache 

(See also Cray X1E in Appendix F) 

• Memory system provides 256GB/s DRAM bandwidth per CPU 
• Up to 16 CPUs and up to 1TB DRAM form shared-memory node 

–  total of 4TB/s bandwidth to shared DRAM memory 

• Up to 512 nodes connected via 128GB/s network links (message passing 
between nodes) 
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Multimedia Extensions (aka SIMD extensions) 

•  Very short vectors added to existing ISAs for microprocessors 
•  Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b 

–  This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b 
datapath split into 2x18b or 4x9b 

–  Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4) 
•  Single instruction operates on all elements within register 

16b 16b 16b 16b 

32b 32b 

64b 

8b 8b 8b 8b 8b 8b 8b 8b 

16b 16b 16b 16b 

16b 16b 16b 16b 

16b 16b 16b 16b 

+ + + + 4x16b adds 
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Multimedia Extensions versus Vectors 

•  Limited instruction set: 
–  no vector length control 
–  no strided load/store or scatter/gather 
–  unit-stride loads must be aligned to 64/128-bit boundary 

•  Limited vector register length: 
–  requires superscalar dispatch to keep multiply/add/load units busy 
–  loop unrolling to hide latencies increases register pressure 

•  Trend towards fuller vector support in 
microprocessors 

–  Better support for misaligned memory accesses 
–  Support of double-precision (64-bit floating-point) 
– New Intel AVX spec (announced April 2008), 256b vector registers 

(expandable up to 1024b)  
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Graphics Processing Units (GPUs) 
•  Original GPUs were dedicated fixed-function devices 

for generating 3D graphics 
•  More recently, GPUs have been made more 

programmable, so called “General-Purpose” GPUs or 
GP-GPUs. 

•  Base building block of modern GP-GPU is very similar 
to a vector machine 

–  e.g., NVIDA G80 series core (NVIDA term is Streaming 
Multiprocessor, SM) has 8 “lanes” (NVIDA term is Streaming 
Processor, SP).  Vector length is 32 elements (NVIDIA calls this a 
“warp”). 

•  Currently machines are built with separate chips for 
CPU and GP-GPU, but future designs will merge onto 
one chip 

–  Already happening for smartphones and tablet designs 

29 
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