CS 152 Computer Architecture
and Engineering

Lecture 17: Vectors Part i

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 1, 2010 CS152, Spring 2010

Last Time: Vector Supercomputers
Epitomized by Cray-1, 1976:

o Scalar Unit
— Load/Store Architecture

* \ector Extension
— Vector Registers
— Vector Instructions

* Implementation
— Hardwired Control
— Highly Pipelined Functional Units
— Interleaved Memory System
— No Data Caches
— No Virtual Memory

April 1, 2010 CS152, Spring 2010 2

Vector Programming Model

KSca/ar Registers Vector Registers
ri5 v1l5
r0 VO roT 111 [2] [VLRMAX-1]
\\ Vector Length Register| \/LLR /
4 Vector Arithmetic Vl: J J / / - ‘/ - ‘/ :
Instructions
ADDV v3, v1, v2 @ @ @ @ @@'
\ [0] [1] [VLR-1]
" Vector Load and Vector Reglster N
Store Instructions '
LV v1, rl, r2 ////
Memory
KBase rl Str|de r2

April 1, 2010 CS152, Spring 2010

Vector Code Example

C code
for (i=0;
C[i] =

1<64; i++)
A[i] + B[1i];

Scalar Code
LI R4, 64

loop:
L.D FO, O(R1)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Vector Code

LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3

April 1, 2010

CS152, Spring 2010

Vector Instruction Set Advantages

« Compact
— one short instruction encodes N operations

» Expressive, tells hardware that these N operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in same pattern as previous instructions

— access a contiguous block of memory
(unit-stride load/store)

— access memory in a known pattern
(strided load/store)

« Scalable
— can run same code on more parallel pipelines (/lanes)

April 1, 2010 CS152, Spring 2010

Vector Arithmetic Execution

e Use deep pipeline (=> fast
clock) to execute element YAIRVAIRY
operations 12 3
e Simplifies control of deep
pipeline because elements in R
vector are independent (=> no T T
hazards!) | f
Ll
Six sta ' ipeli — \ /
ge multiply pipeline | \ /¢
T
V3 <-vl *v2

April 1, 2010 CS152, Spring 2010

Vector Instruction Execution

ADDV C,A,B

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] BI6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

v v v v v v v v v v
nVanl Vi S i Vo S e Vi B e Vi
a2] casr [cer [oy [)]

C[O] C[O] C[1] C[2] C[3]
April 1, 2010 CS152, Spring 2010 !

Vector Memory System

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

e Bank busy time: Time before bank ready to accept next request

Base Stride

Vector Registers
| T
Address v v
Generator +

0(1/2|3|/4/5|6|7|/8|9|A/B|/C|D|E|F

Memory Banks

April 1, 2010 CS152, Spring 2010

Vector Unit Structure

Functional Unit

(, =
e | e | e
\ / \¢ \ / \¢ ‘ / \<F
[| [| [|
Vector | [y | | | [y | v
Registers | | | |
~N~ oae. 159 2,6, 10, . 3710, .
\V V/ \V V/ \V V/ \V V/
\ < \ < ‘ -
\ \ /¢ \ \ /¢ ‘ \ /<F
| ane T Yy T T
Memory Subsystem
April 1, 2010 CS152, Spring 2010 ’

IEREOERIINRURTE

! i i i (TR
5 '@ it B T
3 i Uil SLEBFNNTRRE 1=

:.

Vector register 'L'j"ﬁw“gkmgg : "i “% s . Lane
elements striped g *. _é Q Bg g} ¢
over lanes 8 5 = 8 {F -l
EZ6}[27§28}§[29%30]§ 131 =
IT18][19][20] [21][22]{23] &=
[9] [10][11][12] [13][14][15]; 3
[1]1[2]« [3)l 4] [5]f«iﬁ[6]ﬁi[7] i
siodd ! = -l §

10

April 1, 2010 CS152, Spring 2010

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

Load Unit Multiply Unit Add Unit

OOOOOM |
QQQQQ@-@%‘AAAAA#

time @ e e o oo o AAAAALﬂ(ﬂIIIIIIII

— e eeeeee0 AAAAAAAAm B EEE B EE

O|0|0|0|0|¢==NA A A AAAAA|EEEEEEEHN

OOOOO(L—”-;HIZ'AAAAAQ..L EEEEEEERE

O|0|0|0]|0|0|0 AAAAAJ_EE%IIIIIIII

olololo|o]o|o|o]alalalalalalalllmmmm/EE n B

AAAAAAAAlEEEEEEE R

Instruction —IL I

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

April 1, 2010 CS152, Spring 2010 1

Vector Chaining

» Vector version of register bypassing
— introduced with Cray-1

VIV Vv Vv
LV vl\ V1 > || 3 4 5
MULV v3,vl,v2
ADDV v5, v3, v4
Chain %{n
Load v v
Unit
T Mult, A
Memory

April 1, 2010 CS152, Spring 2010 12

Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time — Adc

« With chaining, can start dependent instruction as soon as first result
appears

April 1, 2010 CS152, Spring 2010 1

Vector Startup

Two components of vector startup penalty
— functional unit latency (time through pipeline)

— dead time or recovery time (time before another vector instruction can
start down pipeline)

Functional Unit Latency

< [
< »

R X | X | X | W

R| X | X | X | W First Vector|Instruction

Dead|Time

R X[X]| X | W

Dead Time R RIx | x| x|w Second Veqtor Instruction

A

R X[X | x|w !
April 1, 2010 CS152, Spring 2010

14

Dead Time and Short Vectors

fend 10 oaxnoxxxx
- No dead time 'I........I

4 cycles dead time TO, Eight lanes

No dead time

X 100% efficiency with 8 element
vectors

64 cycles active

e/eeeee|0C/0OC o000
e e e e eoe|c000|e e e

Cray C90, Two lanes
4 cycle dead time

.I Maximum efficiency 94%
ll with 128 element vectors

|‘

April 1, 2010 CS152, Spring 2010 15

Vector Memory-Memory versus Vector Register

Machines

* Vector memory-memory instructions hold all vector operands in

main memory

» The first vector machines, CDC Star-100 (*73) and TI ASC ('71),
were memory-memory machines

« Cray-1 ('76) was first vector register machine

Example Source Code
for (i=0; i<N; i++)
{
C[i] = A[i] + B[1i];
D[i] A[i] - BI[i];

April 1, 2010

Vector Memory-Memory Code

ADDV C, A, B
SUBV D, A, B

Vector Register Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

CS152, Spring 2010

16

Vector Memory-Memory vs. Vector Register
Machines

* Vector memory-memory architectures (VMMA) require greater main
memory bandwidth, why?

— All operands must be read in and out of memory

 VMMAs make if difficult to overlap execution of multiple vector
operations, why?

— Must check dependencies on memory addresses

 VMMAs incur greater startup latency
— Scalar code was faster on CDC Star-100 for vectors < 100 elements
— For Cray-1, vector/scalar breakeven point was around 2 elements

=> Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector
machines since Cray-1 have had vector register architectures

(we ignore vector memory-memory from now on)

April 1, 2010 CS152, Spring 2010 17

CS152 Administrivia

* Quiz 4, Tue Apr 13

1
April 1, 2010 CS152, Spring 2010 ’

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i1] = A[1] + B[1];

Scalar Sequential Code Vectorized Code

Vector Instruction

Vectorization is a massive compile-time
: reordering of operation sequencing
= requires extensive loop dependence analysis

|

store

ADT145:2010 corrnneesens® d CS152, Spring 2010 1

Vector Stripmining

Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
ANDI R1, N, 63 # N mod 64

MTC1l VLR, Rl # Do remainder
for (i=0; i<N; i++) loop:
A B C DSLL R2, R1l, 3 # Multiply by 8
:@* Remainder DADDU RA, RA, R2 # Bump pointer
A | LV V2, RB
~ DADDU RB, RB, R2
:@* ~64 elements ADDV.D V3, V1, V2
— SV V3, RC
~ DADDU RC, RC, R2

DSUBU N, N, Rl # Subtract elements

\®_' LI R1, 64
- MTC1l VLR, R1 # Reset full length
BGTZ N, loop # Any more to do?
20

April 1, 2010 CS152, Spring 2010

Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[1];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element

...and maskable vector instructions
— vector operation becomes NOP at elements where mask bit is clear

Code example:

CVvM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

21
April 1, 2010 CS152, Spring 2010

Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off result - scan mask vector and only execute
writeback according to mask elements with non-zero masks
M[7]=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M61=0 T A[7] 5[7]
M[5]=1 A[5] B[5] M[5]= 1\ |
M[4]=1 A[4] B[4] M[4]=1
M[3]=0 A[3] B[3] M[3]= o\ C[5]
4 M[2]=0 | CI4] /¢
| = M[1]=1 | =
M[2]=0 | C[2] L M[O]=0\
M[1]=1 | CI1] | C[1]

\ <

Write data port
M[0]=0 _l C[0]

Write Enable Write data port

April 1, 2010 CS152, Spring 2010 2

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction

Rearrange as:

sum[0:VL-1] = O # Vector of VL partial sums

for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

April 1, 2010 CS152, Spring 2010 3

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[1i]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

April 1, 2010 CS152, Spring 2010

24

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
A[B[1]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A wvalues
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values

2
April 1, 2010 CS152, Spring 2010 :

A Modern Vector Super: NEC SX-9 (2008)

8-Way Vector Mask Req. |<+>(Mask

Unit <> Logical
4-.:
Load or ‘ADB <> Multiply {}
Store Vector Reg. <_-:
<> Add. (

<>(_ Div./Sqrt.

-+
I

Bd Mult./Add.
1 Scalar Reg. <—>_
g:;: hig o 1.1 /Add./Div.
Unit AU ()
(au_ |

« 65nm CMOS technology

 Vector unit (3.2 GHz)

— 8 foreground VRegs + 64 background
VRegs (256x64-bit elements/VVReg)

— 64-bit functional units: 2 multiply, 2 add, 1
divide/sqrt, 1 logical, 1 mask unit

— 8 lanes (32+ FLOPS/cycle, 100+ GFLOPS
peak per CPU)

— 1 load or store unit (8 x 8-byte accesses/
cycle)

 Scalar unit (1.6 GHz)

— 4-way superscalar with out-of-order and
speculative execution

— 64KB |-cache and 64KB data cache

* Memory system provides 256GB/s DRAM bandwidth per CPU

« Up to 16 CPUs and up to 1TB DRAM form shared-memory node
— total of 4TB/s bandwidth to shared DRAM memory

» Up to 512 nodes connected via 128GB/s network links (message passing
between nodes)

April 1, 2010

(See also Cray X1E in Appezr%dix F)

CS152, Spring 2010

Multimedia Extensions (aka SIMD extensions)

64b

32b 32b

16b 16b 16b 16b

8b 8b 8b 8b 8b 8b 8b 8b

» Very short vectors added to existing ISAs for microprocessors

» Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

— This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b
datapath split into 2x18b or 4x9b

— Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4)
» Single instruction operates on all elements within register
16b . 16b . 16b . 16b

A
\ \ \ \

\ 16b \ 16b \ 16b \ 16b

0 & SN o SN SR

16b 16b 16b 16b

April 1, 2010 CS152, Spring 2010 21

Multimedia Extensions versus Vectors

 Limited instruction set:
— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

 Limited vector register length:
— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

* Trend towards fuller vector support in
MICroprocessors
— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b)

April 1, 2010 CS152, Spring 2010 28

Graphics Processing Units (GPUs)

Original GPUs were dedicated fixed-function devices
for generating 3D graphics

More recently, GPUs have been made more
programmable, so called “General-Purpose” GPUs or
GP-GPUs.

Base building block of modern GP-GPU is very similar
to a vector machine

— e.g., NVIDA G380 series core (NVIDA term is Streaming
Multiprocessor, SM) has 8 “lanes” (NVIDA term is Streaming
Processor, SP). Vector length is 32 elements (NVIDIA calls this a
“‘warp”).

Currently machines are built with separate chips for
CPU and GP-GPU, but future designs will merge onto
one chip

— Already happening for smartphones and tablet designs

29

April 1, 2010 CS152, Spring 2010

Acknowledgements

* These slides contain material developed and
copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)

« MIT material derived from course 6.823
« UCB material derived from course CS252

30
April 1, 2010 CS152, Spring 2010

