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Last Time: Vector Supercomputers
Epitomized by Cray-1, 1976:

o Scalar Unit
— Load/Store Architecture

* \ector Extension
— Vector Registers
— Vector Instructions

* Implementation
— Hardwired Control
— Highly Pipelined Functional Units
— Interleaved Memory System
— No Data Caches
— No Virtual Memory
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Vector Programming Model
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Vector Code Example

# C code
for (i=0;
C[i] =

1<64; i++)
A[i] + B[1i];

# Scalar Code
LI R4, 64

loop:
L.D FO, O(R1)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

# Vector Code

LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3
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Vector Instruction Set Advantages

« Compact
— one short instruction encodes N operations

» Expressive, tells hardware that these N operations:
— are independent
— use the same functional unit
— access disjoint registers
— access registers in same pattern as previous instructions

— access a contiguous block of memory
(unit-stride load/store)

— access memory in a known pattern
(strided load/store)

« Scalable
— can run same code on more parallel pipelines (/lanes)
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Vector Arithmetic Execution

e Use deep pipeline (=> fast
clock) to execute element YAIRVAIRY
operations 12 3
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Vector Instruction Execution

ADDV C,A,B

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] BI6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4]  B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3]  B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
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April 1, 2010 CS152, Spring 2010 !



Vector Memory System

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

e Bank busy time: Time before bank ready to accept next request

Base Stride

Vector Registers
| T
Address v v
Generator +

0(1/2|3|/4/5|6|7|/8|9|A/B|/C|D|E|F

Memory Banks
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Vector Unit Structure

Functional Unit
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Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
— example machine has 32 elements per vector register and 8 lanes

Load Unit Multiply Unit Add Unit
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Complete 24 operations/cycle while issuing 1 short instruction/cycle
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Vector Chaining

» Vector version of register bypassing
— introduced with Cray-1

VIV Vv Vv
LV vl\ V1 > || 3 4 5
MULV v3,vl,v2
ADDV v5, v3, v4
Chain %{n
Load v v
Unit
T Mult, A
Memory
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Vector Chaining Advantage

e Without chaining, must wait for last element of result to be
written before starting dependent instruction

Time — Adc

« With chaining, can start dependent instruction as soon as first result
appears
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Vector Startup

Two components of vector startup penalty
— functional unit latency (time through pipeline)

— dead time or recovery time (time before another vector instruction can
start down pipeline)

Functional Unit Latency

< [
< »
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R| X | X | X | W First Vector|Instruction

Dead|Time
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April 1, 2010 CS152, Spring 2010

14



Dead Time and Short Vectors

fend 10 oaxnoxxxx
- No dead time 'I........I

4 cycles dead time TO, Eight lanes

No dead time

X 100% efficiency with 8 element
vectors

64 cycles active

e/eeeee|0C/0OC o000
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Cray C90, Two lanes
4 cycle dead time

.I Maximum efficiency 94%
ll with 128 element vectors

|‘
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Vector Memory-Memory versus Vector Register

Machines

* Vector memory-memory instructions hold all vector operands in

main memory

» The first vector machines, CDC Star-100 (*73) and TI ASC ('71),
were memory-memory machines

« Cray-1 ('76) was first vector register machine

Example Source Code
for (i=0; i<N; i++)
{
C[i] = A[i] + B[1i];
D[i] A[i] - BI[i];

April 1, 2010

Vector Memory-Memory Code

ADDV C, A, B
SUBV D, A, B

Vector Register Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

CS152, Spring 2010
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Vector Memory-Memory vs. Vector Register
Machines

* Vector memory-memory architectures (VMMA) require greater main
memory bandwidth, why?

— All operands must be read in and out of memory

 VMMAs make if difficult to overlap execution of multiple vector
operations, why?

— Must check dependencies on memory addresses

 VMMAs incur greater startup latency
— Scalar code was faster on CDC Star-100 for vectors < 100 elements
— For Cray-1, vector/scalar breakeven point was around 2 elements

=> Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector
machines since Cray-1 have had vector register architectures

(we ignore vector memory-memory from now on)
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CS152 Administrivia

* Quiz 4, Tue Apr 13

1
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Automatic Code Vectorization

for (i=0; i < N; i++)
C[i1] = A[1] + B[1];

Scalar Sequential Code Vectorized Code

Vector Instruction

Vectorization is a massive compile-time
: reordering of operation sequencing
= requires extensive loop dependence analysis

|

store
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Vector Stripmining

Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”
ANDI R1, N, 63 # N mod 64

MTC1l VLR, Rl # Do remainder
for (i=0; i<N; i++) loop:
A B C DSLL R2, R1l, 3 # Multiply by 8
:@* Remainder DADDU RA, RA, R2 # Bump pointer
A | LV V2, RB
~ DADDU RB, RB, R2
:@* ~64 elements ADDV.D V3, V1, V2
— SV V3, RC
~ DADDU RC, RC, R2

DSUBU N, N, Rl # Subtract elements

\®_' LI R1, 64
- MTC1l VLR, R1 # Reset full length
BGTZ N, loop # Any more to do?
20
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Vector Conditional Execution

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)
if (A[i]>0) then
A[i] = B[1];

Solution: Add vector mask (or flag) registers
— vector version of predicate registers, 1 bit per element

...and maskable vector instructions
— vector operation becomes NOP at elements where mask bit is clear

Code example:

CVvM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

21
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Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off result - scan mask vector and only execute
writeback according to mask elements with non-zero masks
M[7]=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M61=0 T A[7] 5[7]
M[5]=1 A[5] B[5] M[5]= 1\ |
M[4]=1 A[4] B[4] M[4]=1
M[3]=0 A[3] B[3] M[3]= o\ C[5]
4 M[2]=0 | CI4] /¢
| = M[1]=1 | =
M[2]=0 | C[2] L M[O]=0\
M[1]=1 | CI1] | C[1]

\ <

Write data port
M[0]=0 _l C[0]

Write Enable  Write data port
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Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction

# Rearrange as:

sum[0:VL-1] = O # Vector of VL partial sums

for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

# Now have VL partial sums in one vector register

do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)
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Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[i] + C[D[1i]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

April 1, 2010 CS152, Spring 2010
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Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
A[B[1]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A wvalues
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values

2
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A Modern Vector Super: NEC SX-9 (2008)

8-Way Vector Mask Req. |<+>(  Mask

Unit <> Logical
4-.:
Load or ‘ADB <> Multiply {}
Store Vector Reg. <_-:
<> Add. (

<>(_ Div./Sqrt.

-+
I

Bd Mult./Add.
1 Scalar Reg. <—>_
g:;: hig o 1.1 /Add./Div.
Unit AU ()
(au_ |

« 65nm CMOS technology

 Vector unit (3.2 GHz)

— 8 foreground VRegs + 64 background
VRegs (256x64-bit elements/VVReg)

— 64-bit functional units: 2 multiply, 2 add, 1
divide/sqrt, 1 logical, 1 mask unit

— 8 lanes (32+ FLOPS/cycle, 100+ GFLOPS
peak per CPU)

— 1 load or store unit (8 x 8-byte accesses/
cycle)

 Scalar unit (1.6 GHz)

— 4-way superscalar with out-of-order and
speculative execution

— 64KB |-cache and 64KB data cache

* Memory system provides 256GB/s DRAM bandwidth per CPU

« Up to 16 CPUs and up to 1TB DRAM form shared-memory node
— total of 4TB/s bandwidth to shared DRAM memory

» Up to 512 nodes connected via 128GB/s network links (message passing
between nodes)

April 1, 2010

(See also Cray X1E in Appezr%dix F)
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Multimedia Extensions (aka SIMD extensions)

64b

32b 32b

16b 16b 16b 16b

8b 8b 8b 8b 8b 8b 8b 8b

» Very short vectors added to existing ISAs for microprocessors

» Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

— This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b
datapath split into 2x18b or 4x9b

— Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4)
» Single instruction operates on all elements within register
16b . 16b . 16b . 16b

A
\ \ \ \

\ 16b \ 16b \ 16b \ 16b

0 & SN o SN SR

16b 16b 16b 16b
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Multimedia Extensions versus Vectors

 Limited instruction set:
— no vector length control
— no strided load/store or scatter/gather
— unit-stride loads must be aligned to 64/128-bit boundary

 Limited vector register length:
— requires superscalar dispatch to keep multiply/add/load units busy
— loop unrolling to hide latencies increases register pressure

* Trend towards fuller vector support in
MICroprocessors
— Better support for misaligned memory accesses
— Support of double-precision (64-bit floating-point)

— New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b)
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Graphics Processing Units (GPUs)

Original GPUs were dedicated fixed-function devices
for generating 3D graphics

More recently, GPUs have been made more
programmable, so called “General-Purpose” GPUs or
GP-GPUs.

Base building block of modern GP-GPU is very similar
to a vector machine

— e.g., NVIDA G380 series core (NVIDA term is Streaming
Multiprocessor, SM) has 8 “lanes” (NVIDA term is Streaming
Processor, SP). Vector length is 32 elements (NVIDIA calls this a
“‘warp”).

Currently machines are built with separate chips for
CPU and GP-GPU, but future designs will merge onto
one chip

— Already happening for smartphones and tablet designs

29
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