
April 1, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 17: Vectors Part II

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 1, 2010 CS152, Spring 2010 2

Last Time: Vector Supercomputers

Epitomized by Cray-1, 1976:

•  Scalar Unit
–  Load/Store Architecture

•  Vector Extension
–  Vector Registers
–  Vector Instructions

•  Implementation
–  Hardwired Control
–  Highly Pipelined Functional Units
–  Interleaved Memory System
–  No Data Caches
–  No Virtual Memory

April 1, 2010 CS152, Spring 2010
3

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

April 1, 2010 CS152, Spring 2010
4

Vector Code Example

Scalar Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

April 1, 2010 CS152, Spring 2010
5

Vector Instruction Set Advantages

•  Compact
–  one short instruction encodes N operations

•  Expressive, tells hardware that these N operations:
–  are independent
–  use the same functional unit
–  access disjoint registers
–  access registers in same pattern as previous instructions
–  access a contiguous block of memory

 (unit-stride load/store)
–  access memory in a known pattern

(strided load/store)
•  Scalable

–  can run same code on more parallel pipelines (lanes)

April 1, 2010 CS152, Spring 2010
6

Vector Arithmetic Execution

•  Use deep pipeline (=> fast
clock) to execute element
operations

•  Simplifies control of deep
pipeline because elements in
vector are independent (=> no
hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

April 1, 2010 CS152, Spring 2010
7

Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

April 1, 2010 CS152, Spring 2010
8

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

•  Bank busy time: Time before bank ready to accept next request

April 1, 2010 CS152, Spring 2010
9

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

April 1, 2010 CS152, Spring 2010
10

T0 Vector Microprocessor (UCB/ICSI, 1995)

Lane Vector register
elements striped

over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

April 1, 2010 CS152, Spring 2010
11

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
–  example machine has 32 elements per vector register and 8 lanes

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

April 1, 2010 CS152, Spring 2010
12

Vector Chaining
•  Vector version of register bypassing

–  introduced with Cray-1

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

April 1, 2010 CS152, Spring 2010
13

Vector Chaining Advantage

•  With chaining, can start dependent instruction as soon as first result
appears

Load

Mul

Add

Load

Mul

Add Time

•  Without chaining, must wait for last element of result to be
written before starting dependent instruction

April 1, 2010 CS152, Spring 2010
14

Vector Startup
Two components of vector startup penalty

–  functional unit latency (time through pipeline)
–  dead time or recovery time (time before another vector instruction can

start down pipeline)

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

April 1, 2010 CS152, Spring 2010
15

Dead Time and Short Vectors

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes
No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

April 1, 2010 CS152, Spring 2010
16

Vector Memory-Memory versus Vector Register
Machines

•  Vector memory-memory instructions hold all vector operands in
main memory

•  The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71),
were memory-memory machines

•  Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)
{
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i];
}

Example Source Code ADDV C, A, B
SUBV D, A, B

Vector Memory-Memory Code

LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2
SV V4, D

Vector Register Code

April 1, 2010 CS152, Spring 2010
17

Vector Memory-Memory vs. Vector Register
Machines

•  Vector memory-memory architectures (VMMA) require greater main
memory bandwidth, why?

–  All operands must be read in and out of memory
•  VMMAs make if difficult to overlap execution of multiple vector

operations, why?
–  Must check dependencies on memory addresses

•  VMMAs incur greater startup latency
–  Scalar code was faster on CDC Star-100 for vectors < 100 elements
–  For Cray-1, vector/scalar breakeven point was around 2 elements

⇒ Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector
machines since Cray-1 have had vector register architectures

(we ignore vector memory-memory from now on)

April 1, 2010 CS152, Spring 2010
18

CS152 Administrivia
•  Quiz 4, Tue Apr 13

April 1, 2010 CS152, Spring 2010
19

Automatic Code Vectorization
for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing

⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

April 1, 2010 CS152, Spring 2010
20

Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”

 ANDI R1, N, 63 # N mod 64
 MTC1 VLR, R1 # Do remainder
loop:
 LV V1, RA
 DSLL R2, R1, 3 # Multiply by 8
 DADDU RA, RA, R2 # Bump pointer
 LV V2, RB
 DADDU RB, RB, R2
 ADDV.D V3, V1, V2
 SV V3, RC
 DADDU RC, RC, R2
 DSUBU N, N, R1 # Subtract elements
 LI R1, 64
 MTC1 VLR, R1 # Reset full length
 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)
 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

April 1, 2010 CS152, Spring 2010
21

Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)
 if (A[i]>0) then
 A[i] = B[i];

Solution: Add vector mask (or flag) registers
–  vector version of predicate registers, 1 bit per element

…and maskable vector instructions
–  vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements
LV vA, rA # Load entire A vector
SGTVS.D vA, F0 # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV vA, rA # Store A back to memory under mask

April 1, 2010 CS152, Spring 2010
22

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
–  scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple Implementation
–  execute all N operations, turn off result

writeback according to mask

April 1, 2010 CS152, Spring 2010
23

Vector Reductions

Problem: Loop-carried dependence on reduction variables
sum = 0;
for (i=0; i<N; i++)
 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction
Rearrange as:
sum[0:VL-1] = 0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
 VL = VL/2; # Halve vector length
 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

April 1, 2010 CS152, Spring 2010
24

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

April 1, 2010 CS152, Spring 2010
25

Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++)
 A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A values
ADDV vA, vA, 1 # Increment
SVI vA, rA, vB # Scatter incremented values

April 1, 2010 CS152, Spring 2010
26

A Modern Vector Super: NEC SX-9 (2008)
•  65nm CMOS technology
• Vector unit (3.2 GHz)

– 8 foreground VRegs + 64 background
VRegs (256x64-bit elements/VReg)

– 64-bit functional units: 2 multiply, 2 add, 1
divide/sqrt, 1 logical, 1 mask unit

– 8 lanes (32+ FLOPS/cycle, 100+ GFLOPS
peak per CPU)

– 1 load or store unit (8 x 8-byte accesses/
cycle)

• Scalar unit (1.6 GHz)
– 4-way superscalar with out-of-order and

speculative execution
– 64KB I-cache and 64KB data cache

(See also Cray X1E in Appendix F)

• Memory system provides 256GB/s DRAM bandwidth per CPU
• Up to 16 CPUs and up to 1TB DRAM form shared-memory node

–  total of 4TB/s bandwidth to shared DRAM memory

• Up to 512 nodes connected via 128GB/s network links (message passing
between nodes)

April 1, 2010 CS152, Spring 2010
27

Multimedia Extensions (aka SIMD extensions)

•  Very short vectors added to existing ISAs for microprocessors
•  Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

–  This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b
datapath split into 2x18b or 4x9b

–  Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4)
•  Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + + 4x16b adds

April 1, 2010 CS152, Spring 2010
28

Multimedia Extensions versus Vectors

•  Limited instruction set:
–  no vector length control
–  no strided load/store or scatter/gather
–  unit-stride loads must be aligned to 64/128-bit boundary

•  Limited vector register length:
–  requires superscalar dispatch to keep multiply/add/load units busy
–  loop unrolling to hide latencies increases register pressure

•  Trend towards fuller vector support in
microprocessors

–  Better support for misaligned memory accesses
–  Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector registers

(expandable up to 1024b)

April 1, 2010 CS152, Spring 2010

Graphics Processing Units (GPUs)
•  Original GPUs were dedicated fixed-function devices

for generating 3D graphics
•  More recently, GPUs have been made more

programmable, so called “General-Purpose” GPUs or
GP-GPUs.

•  Base building block of modern GP-GPU is very similar
to a vector machine

–  e.g., NVIDA G80 series core (NVIDA term is Streaming
Multiprocessor, SM) has 8 “lanes” (NVIDA term is Streaming
Processor, SP). Vector length is 32 elements (NVIDIA calls this a
“warp”).

•  Currently machines are built with separate chips for
CPU and GP-GPU, but future designs will merge onto
one chip

–  Already happening for smartphones and tablet designs

29

April 1, 2010 CS152, Spring 2010
30

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

