
April 6, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 18: Multithreading

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 6, 2010 CS152, Spring 2010
2

Last Time: Vector Computers
•  Vectors provide efficient execution of data-parallel loop codes
•  Vector ISA provides compact encoding of machine parallelism
•  ISAs scale to more lanes without changing binary code
•  Vector registers provide fast temporary storage to reduce memory

bandwidth demands, & simplify dependence checking between vector
instructions

•  Scatter/gather, masking, compress/expand operations increase set of
vectorizable loops

•  Requires extensive compiler analysis (or programmer annotation) to
be certain that loops can be vectorized

•  Full “long” vector support still only in supercomputers (NEC SX9,
Cray X1E); microprocessors have limited “short” vector operations

–  Intel x86 MMX/SSE/AVX
–  IBM/Motorola PowerPC VMX/Altivec

April 6, 2010 CS152, Spring 2010
3

Multithreading
•  Difficult to continue to extract instruction-level

parallelism (ILP) or data-level parallelism (DLP) from
a single sequential thread of control

•  Many workloads can make use of thread-level
parallelism (TLP)
– TLP from multiprogramming (run independent

sequential jobs)
– TLP from multithreaded applications (run one job

faster using parallel threads)
•  Multithreading uses TLP to improve utilization of a

single processor

April 6, 2010 CS152, Spring 2010
4

Pipeline Hazards

•  Each instruction may depend on the next

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D
F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?

April 6, 2010 CS152, Spring 2010
5

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions from
different program threads on same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

April 6, 2010 CS152, Spring 2010
6

CDC 6600 Peripheral Processors
(Cray, 1964)

•  First multithreaded hardware
•  10 “virtual” I/O processors
•  Fixed interleave on simple pipeline
•  Pipeline has 100ns cycle time
•  Each virtual processor executes one instruction every 1000ns
•  Accumulator-based instruction set to reduce processor state

April 6, 2010 CS152, Spring 2010
7

Simple Multithreaded Pipeline

• Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2 Thread
select

PC
1 PC

1 PC
1 PC

1
I$ IR GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

April 6, 2010 CS152, Spring 2010
8

Multithreading Costs

•  Each thread requires its own user state
–  PC
–  GPRs

•  Also, needs its own system state
–  virtual memory page table base register
–  exception handling registers

•  Other overheads:
–  Additional cache/TLB conflicts from competing threads
–  (or add larger cache/TLB capacity)
– More OS overhead to schedule more threads (where do all

these threads come from?)

April 6, 2010 CS152, Spring 2010
9

Thread Scheduling Policies

•  Fixed interleave (CDC 6600 PPUs, 1964)
–  Each of N threads executes one instruction every N cycles
–  If thread not ready to go in its slot, insert pipeline bubble

•  Software-controlled interleave (TI ASC PPUs, 1971)
–  OS allocates S pipeline slots amongst N threads
–  Hardware performs fixed interleave over S slots, executing whichever

thread is in that slot

•  Hardware-controlled thread scheduling (HEP, 1982)
–  Hardware keeps track of which threads are ready to go
–  Picks next thread to execute based on hardware priority scheme

April 6, 2010 CS152, Spring 2010
10

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
–  120 threads per processor
–  10 MHz clock rate
–  Up to 8 processors
–  precursor to Tera MTA (Multithreaded Architecture)

April 6, 2010 CS152, Spring 2010
11

Tera MTA (1990-)

•  Up to 256 processors
•  Up to 128 active threads per processor
•  Processors and memory modules

populate a sparse 3D torus
interconnection fabric

•  Flat, shared main memory
–  No data cache
–  Sustains one main memory access per cycle

per processor
•  GaAs logic in prototype, 1KW/processor

@ 260MHz
–  Second version CMOS, MTA-2, 50W/processor
–  New version, XMT, fits into AMD Opteron socket,

runs at 500MHz

April 6, 2010 CS152, Spring 2010
12

MTA Pipeline

A

W

C

W

M

Inst Fetch

M
em

or
y

Po
ol

Retry Pool

Interconnection Network

W
rit

e
Po

ol

W

Memory pipeline

Issue Pool
•  Every cycle, one
VLIW instruction from
one active thread is
launched into pipeline

•  Instruction pipeline is
21 cycles long

•  Memory operations
incur ~150 cycles of
latency

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz…

What is single-thread performance?

April 6, 2010 CS152, Spring 2010
13

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality

– No data cache
– Many parallel threads needed to hide large memory latency

Other applications are more cache friendly
–  Few pipeline bubbles if cache mostly has hits
–  Just add a few threads to hide occasional cache miss

latencies
–  Swap threads on cache misses

April 6, 2010 CS152, Spring 2010
14

MIT Alewife (1990)

• Modified SPARC chips
–  register windows hold different thread

contexts

• Up to four threads per node
• Thread switch on local cache miss

April 6, 2010 CS152, Spring 2010
15

IBM PowerPC RS64-IV (2000)

•  Commercial coarse-grain multithreading CPU
•  Based on PowerPC with quad-issue in-order five-

stage pipeline
•  Each physical CPU supports two virtual CPUs
•  On L2 cache miss, pipeline is flushed and execution

switches to second thread
–  short pipeline minimizes flush penalty (4 cycles), small

compared to memory access latency
–  flush pipeline to simplify exception handling

April 6, 2010 CS152, Spring 2010
16

CS152 Administrivia

•  Quiz 4, Tuesday April 13
•  VLIW, Vectors, Multithreading (lectures 15-18)

April 6, 2010 CS152, Spring 2010
17

Simultaneous Multithreading (SMT)
for OoO Superscalars

•  Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on
one thread at a time

•  SMT uses fine-grain control already present inside an
OoO superscalar to allow instructions from multiple
threads to enter execution on same clock cycle.
Gives better utilization of machine resources.

April 6, 2010 CS152, Spring 2010
18

For most apps, most execution units
lie idle in an OoO superscalar

From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,
ISCA 1995."

For an 8-way
superscalar.!

April 6, 2010 CS152, Spring 2010
19

Superscalar Machine Efficiency

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

April 6, 2010 CS152, Spring 2010
20

Vertical Multithreading

•  What is the effect of cycle-by-cycle interleaving?

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

April 6, 2010 CS152, Spring 2010
21

Chip Multiprocessing (CMP)

•  What is the effect of splitting into multiple processors?

Issue width

Time

April 6, 2010 CS152, Spring 2010
22

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

•  Interleave multiple threads to multiple issue slots with
no restrictions

Issue width

Time

April 6, 2010 CS152, Spring 2010
23

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

•  Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

•  Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

•  OOO instruction window already has most of the
circuitry required to schedule from multiple threads

•  Any single thread can utilize whole machine

April 6, 2010 CS152, Spring 2010
24

IBM Power 4
Single-threaded predecessor to
Power 5. 8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!

April 6, 2010 CS152, Spring 2010
25

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

April 6, 2010 CS152, Spring 2010
26

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

April 6, 2010 CS152, Spring 2010
27

Changes in Power 5 to support SMT
•  Increased associativity of L1 instruction cache and the

instruction address translation buffers
•  Added per thread load and store queues
•  Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
•  Added separate instruction prefetch and buffering per

thread
•  Increased the number of virtual registers from 152 to 240
•  Increased the size of several issue queues
•  The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

April 6, 2010 CS152, Spring 2010
28

Pentium-4 Hyperthreading (2002)

•  First commercial SMT design (2-way SMT)
–  Hyperthreading == SMT

•  Logical processors share nearly all resources of the physical
processor

–  Caches, execution units, branch predictors
•  Die area overhead of hyperthreading ~ 5%
•  When one logical processor is stalled, the other can make

progress
–  No logical processor can use all entries in queues when two threads are active

•  Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

•  Hyperthreading dropped on OoO P6 based followons to
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with
Nehalem generation machines in 2008.

•  Intel Atom (in-order x86 core) has two-way vertical multithreading

April 6, 2010 CS152, Spring 2010
29

Initial Performance of SMT
•  Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
–  Pentium 4 is dual threaded SMT
–  SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

•  Running on Pentium 4 each of 26 SPEC benchmarks
paired with every other (262 runs) speed-ups from 0.90
to 1.58; average was 1.20

•  Power 5, 8-processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

•  Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

–  Most gained some
–  Fl.Pt. apps had most cache conflicts and least gains

April 6, 2010 CS152, Spring 2010
30

SMT adaptation to parallelism type
For regions with high thread level
parallelism (TLP) entire machine
width is shared by all threads

Issue width

Time

Issue width

Time

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction level
parallelism (ILP)

April 6, 2010 CS152, Spring 2010
31

Icount Choosing Policy

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

April 6, 2010 CS152, Spring 2010
32

Summary: Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

April 6, 2010 CS152, Spring 2010
33

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

