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Last Time: Vector Computers 
•  Vectors provide efficient execution of data-parallel loop codes 
•  Vector ISA provides compact encoding of machine parallelism 
•  ISAs scale to more lanes without changing binary code 
•  Vector registers provide fast temporary storage to reduce memory 

bandwidth demands, & simplify dependence checking between vector 
instructions 

•  Scatter/gather, masking, compress/expand operations increase set of 
vectorizable loops 

•  Requires extensive compiler analysis (or programmer annotation) to 
be certain that loops can be vectorized 

•  Full “long” vector support still only in supercomputers (NEC SX9, 
Cray X1E); microprocessors have limited “short” vector operations 

–  Intel x86 MMX/SSE/AVX 
–  IBM/Motorola PowerPC VMX/Altivec 
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Multithreading 
•  Difficult to continue to extract instruction-level 

parallelism (ILP) or data-level parallelism (DLP) from 
a single sequential thread of control  

•  Many workloads can make use of thread-level 
parallelism (TLP) 
– TLP from multiprogramming (run independent 

sequential jobs) 
– TLP from multithreaded applications (run one job 

faster using parallel threads) 
•  Multithreading uses TLP to improve utilization of a 

single processor 



April 6, 2010 CS152, Spring 2010 
4 

Pipeline Hazards 

•  Each instruction may depend on the next 

LW r1, 0(r2) 
LW r5, 12(r1) 
ADDI r5, r5, #12 
SW 12(r1), r5 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 
F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

What is usually done to cope with this? 
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Multithreading 

How can we guarantee no dependencies between 
instructions in a pipeline? 

-- One way is to interleave execution of instructions from 
different program threads on same pipeline 

F D X M W 
t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 
T2: ADD r7, r1, r4 
T3: XORI r5, r4, #12 
T4: SW 0(r7),  r5 
T1: LW r5, 12(r1) 

t9 

F D X M W 
F D X M W 

F D X M W 
F D X M W 

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 
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CDC 6600 Peripheral Processors 
(Cray, 1964) 

•  First multithreaded hardware 
•  10 “virtual” I/O processors 
•  Fixed interleave on simple pipeline 
•  Pipeline has 100ns cycle time 
•  Each virtual processor executes one instruction every 1000ns 
•  Accumulator-based instruction set to reduce processor state 



April 6, 2010 CS152, Spring 2010 
7 

Simple Multithreaded Pipeline 

• Have to carry thread select down pipeline to ensure correct state bits 
read/written at each pipe stage 

• Appears to software (including OS) as multiple, albeit slower, CPUs 

+1 

2 Thread 
select 

PC 
1 PC 

1 PC 
1 PC 

1 
I$ IR GPR1 GPR1 GPR1 GPR1 

X 

Y 

2 

D$ 
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Multithreading Costs 

•  Each thread requires its own user state 
–  PC 
–  GPRs 

•  Also, needs its own system state 
–  virtual memory page table base register 
–  exception handling registers 

•  Other overheads: 
–  Additional cache/TLB conflicts from competing threads 
–  (or add larger cache/TLB capacity) 
– More OS overhead to schedule more threads (where do all 

these threads come from?) 
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Thread Scheduling Policies 

•  Fixed interleave (CDC 6600 PPUs, 1964) 
–  Each of N threads executes one instruction every N cycles 
–  If thread not ready to go in its slot, insert pipeline bubble 

•  Software-controlled interleave (TI ASC PPUs, 1971) 
–  OS allocates S pipeline slots amongst N threads 
–  Hardware performs fixed interleave over S slots, executing whichever 

thread is in that slot 

•  Hardware-controlled thread scheduling (HEP, 1982) 
–  Hardware keeps track of which threads are ready to go 
–  Picks next thread to execute based on hardware priority scheme 
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Denelcor HEP 
(Burton Smith, 1982) 

First commercial machine to use hardware threading in main CPU 
–  120 threads per processor 
–  10 MHz clock rate 
–  Up to 8 processors 
–  precursor to Tera MTA (Multithreaded Architecture) 
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Tera MTA (1990-) 

•  Up to 256 processors 
•  Up to 128 active threads per processor 
•  Processors and memory modules 

populate a sparse 3D torus 
interconnection fabric 

•  Flat, shared main memory 
–   No data cache 
–   Sustains one main memory access per cycle 

per processor 
•  GaAs logic in prototype, 1KW/processor 

@ 260MHz 
–  Second version CMOS, MTA-2, 50W/processor 
–  New version, XMT, fits into AMD Opteron socket, 

runs at 500MHz 
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MTA Pipeline 
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Memory pipeline 

Issue Pool 
•  Every cycle, one 
VLIW instruction from 
one active thread is 
launched into pipeline 

•  Instruction pipeline is 
21 cycles long 

•  Memory operations 
incur ~150 cycles of 
latency 

Assuming a single thread issues one 
instruction every 21 cycles, and clock 
rate is 260 MHz… 

What is single-thread performance?  
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Coarse-Grain Multithreading 

Tera MTA designed for supercomputing applications 
with large data sets and low locality 

– No data cache 
– Many parallel threads needed to hide large memory latency 

Other applications are more cache friendly 
–  Few pipeline bubbles if cache mostly has hits 
–  Just add a few threads to hide occasional cache miss 

latencies 
–  Swap threads on cache misses 
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MIT Alewife (1990) 

• Modified SPARC chips 
–  register windows hold different thread 

contexts 

• Up to four threads per node 
• Thread switch on local cache miss 
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IBM PowerPC RS64-IV (2000) 

•  Commercial coarse-grain multithreading CPU 
•  Based on PowerPC with quad-issue in-order five-

stage pipeline 
•  Each physical CPU supports two virtual CPUs 
•  On L2 cache miss, pipeline is flushed and execution 

switches to second thread 
–  short pipeline minimizes flush penalty (4 cycles), small 

compared to memory access latency 
–  flush pipeline to simplify exception handling 
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CS152 Administrivia 

•  Quiz 4, Tuesday April 13 
•  VLIW, Vectors, Multithreading (lectures 15-18) 
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Simultaneous Multithreading (SMT) 
for OoO Superscalars 

•  Techniques presented so far have all been “vertical” 
multithreading where each pipeline stage works on 
one thread at a time 

•  SMT uses fine-grain control already present inside an 
OoO superscalar to allow instructions from multiple 
threads to enter execution on same clock cycle.  
Gives better utilization of machine resources. 
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For most apps, most execution units 
lie idle in an OoO superscalar 

From: Tullsen, Eggers, and Levy,"
“Simultaneous Multithreading: 
Maximizing On-chip Parallelism”, 
ISCA 1995."

For an 8-way 
superscalar.!
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Superscalar Machine Efficiency 

Issue width 

Time 

Completely idle cycle 
(vertical waste) 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 
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Vertical Multithreading 

•  What is the effect of cycle-by-cycle interleaving? 

Issue width 

Time 

Second thread interleaved 
cycle-by-cycle 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 
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Chip Multiprocessing (CMP) 

•  What is the effect of splitting into multiple processors? 

Issue width 

Time 
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Ideal Superscalar Multithreading  
[Tullsen, Eggers, Levy, UW, 1995] 

•  Interleave multiple threads to multiple issue slots with 
no restrictions 

Issue width 

Time 
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O-o-O Simultaneous Multithreading 
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996] 

•  Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously 

•  Utilize wide out-of-order superscalar processor issue 
queue to find instructions to issue from multiple threads 

•  OOO instruction window already has most of the 
circuitry required to schedule from multiple threads 

•  Any single thread can utilize whole machine 
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IBM Power 4 
Single-threaded predecessor to 
Power 5.  8 execution units in!
out-of-order engine, each may!
issue an instruction each cycle.!
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Power 4 

Power 5 

2 fetch (PC), 
2 initial decodes 

2 commits 
(architected 
register sets) 
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Power 5 data flow ... 

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck  
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Changes in Power 5 to support SMT 
•  Increased associativity of L1 instruction cache and the 

instruction address translation buffers  
•  Added per thread load and store queues  
•  Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches 
•  Added separate instruction prefetch and buffering per 

thread 
•  Increased the number of virtual registers from 152 to 240 
•  Increased the size of several issue queues 
•  The Power5 core is about 24% larger than the Power4 core 

because of the addition of SMT support 
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Pentium-4 Hyperthreading (2002) 

•  First commercial SMT design (2-way SMT) 
–  Hyperthreading == SMT 

•  Logical processors share nearly all resources of the physical 
processor 

–  Caches, execution units, branch predictors 
•  Die area overhead of hyperthreading  ~ 5% 
•  When one logical processor is stalled, the other can make 

progress 
–  No logical processor can use all entries in queues when two threads are active 

•  Processor running only one active software thread runs at 
approximately same speed with or without hyperthreading 

•  Hyperthreading dropped on OoO P6 based followons  to 
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until revived with 
Nehalem generation machines in 2008. 

•  Intel Atom (in-order x86 core) has two-way vertical multithreading 
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Initial Performance of SMT 
•  Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate 
–  Pentium 4 is dual threaded SMT 
–  SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark 

•  Running on Pentium 4 each of 26 SPEC benchmarks 
paired with every other (262 runs) speed-ups from 0.90 
to 1.58; average was 1.20 

•  Power 5, 8-processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate 

•  Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41 

–  Most gained some 
–  Fl.Pt. apps had most cache conflicts and least gains 
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SMT adaptation to parallelism type  
For regions with high thread level 
parallelism (TLP) entire machine 
width is shared by all threads 

Issue width 

Time 

Issue width 

Time 

For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction level 
parallelism (ILP) 
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Icount Choosing Policy 

Why does this enhance throughput? 

Fetch from thread with the least instructions in flight. 
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Summary: Multithreaded Categories 
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 
Multithreading 

Thread 1 
Thread 2 

Thread 3 
Thread 4 

Thread 5 
Idle slot 
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