
April 8, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 19: Synchronization and
Sequential Consistency

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 8, 2010 CS152, Spring 2010
2

Summary: Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

April 8, 2010 CS152, Spring 2010
3

CS152-Spring’09

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006	

3X

April 8, 2010 CS152, Spring 2010
4

Parallel Processing:
Déjà vu all over again?

“… today’s processors … are nearing an impasse as technologies approach the
speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

•  Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to multicore designs.
… This is a sea change in computing”

Paul Otellini, President, Intel (2005)
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year	

 AMD/’09	

 Intel/’09	

 IBM/’09	

 Sun/’09	

Processors/chip	

 6	

 8	

 8	

 16	

Threads/Processor	

 1	

 2	

 4	

 8	

Threads/chip	

 6	

 16	

 32	

 128	

April 8, 2010 CS152, Spring 2010
5

symmetric
•  All memory is equally far
 away from all processors
•  Any processor can do any I/O
 (set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

April 8, 2010 CS152, Spring 2010
6

Synchronization

The need for synchronization arises
whenever
there are concurrent processes in a system

 (even in a uniprocessor system)

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Mutual Exclusion: Ensure that only one
process uses a resource at a given time

producer

consumer

Shared
Resource

P1 P2

April 8, 2010 CS152, Spring 2010
7

A Producer-Consumer Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

Problems?

April 8, 2010 CS152, Spring 2010
8

A Producer-Consumer Example
continued

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
 2, 3, 4, 1
 4, 1, 2, 3

1

2

3

4

April 8, 2010 CS152, Spring 2010
9

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

April 8, 2010 CS152, Spring 2010
10

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

April 8, 2010 CS152, Spring 2010
11

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X) additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

 more on this later

April 8, 2010 CS152, Spring 2010
12

Multiple Consumer Example

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer ⇒ locks

tail head
Producer

 Rtail

Consumer
1

 R Rhead

Rtail

Consumer
2

 R Rhead

Rtail

April 8, 2010 CS152, Spring 2010
13

Locks or Semaphores
E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the
following operations:

P(s): if s>0, decrement s by 1, otherwise wait

V(s): increment s by 1 and wake up one of
 the waiting processes

P’s and V’s must be executed atomically, i.e., without
•  interruptions or
•  interleaved accesses to s by other processors

initial value of s determines
the maximum no. of processes
in the critical section

Process i
P(s)
 <critical section>
V(s)

April 8, 2010 CS152, Spring 2010
14

Implementation of Semaphores

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
 atomic read-modify-write instructions

Test&Set (m), R:
R ← M[m];
if R==0 then

 M[m] ← 1;

Swap (m), R:
Rt ← M[m];
M[m] ← R;
R ← Rt;

Fetch&Add (m), RV, R:
R ← M[m];
M[m] ← R + RV;

Examples: m is a memory location, R is a register

April 8, 2010 CS152, Spring 2010
15

CS152 Administrivia

April 8, 2010 CS152, Spring 2010
16

Critical
Section

P: Test&Set (mutex),Rtemp
 if (Rtemp!=0) goto P
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead

V: Store (mutex),0
 process(R)

Multiple Consumers Example
using the Test&Set Instruction

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

What if the process stops or is swapped out while
in the critical section?

April 8, 2010 CS152, Spring 2010
17

Nonblocking Synchronization
Compare&Swap(m), Rt, Rs:
 if (Rt==M[m])
 then M[m]=Rs;
 Rs=Rt ;
 status ← success;
 else status ← fail;

try: Load Rhead, (head)
spin: Load Rtail, (tail)

 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rnewhead = Rhead+1
 Compare&Swap(head), Rhead, Rnewhead
 if (status==fail) goto try
 process(R)

status is an
implicit
argument

April 8, 2010 CS152, Spring 2010
18

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead = Rhead + 1
 Store-conditional (head), Rhead
 if (status==fail) goto try
 process(R)

Load-reserve R, (m):
<flag, adr> ← <1, m>;
R ← M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

 reservation on m;
 M[m] ← R;
 status ← succeed;

else status ← fail;

April 8, 2010 CS152, Spring 2010
19

Performance of Locks
Blocking atomic read-modify-write instructions

 e.g., Test&Set, Fetch&Add, Swap
 vs

Non-blocking atomic read-modify-write instructions
 e.g., Compare&Swap,
 Load-reserve/Store-conditional
 vs

Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:
 degree of contention,
 caches,
 out-of-order execution of Loads and Stores

 later ...

April 8, 2010 CS152, Spring 2010
20

Issues in Implementing
Sequential Consistency

Implementation of SC is complicated by two issues

•  Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

•  Caches
Caches can prevent the effect of a store from
being seen by other processors

M

P P P P P P

April 8, 2010 CS152, Spring 2010
21

Memory Fences
Instructions to sequentialize memory accesses

Processors with relaxed or weak memory models (i.e.,
permit Loads and Stores to different addresses to be
reordered) need to provide memory fence instructions
to force the serialization of memory accesses

Examples of processors with relaxed memory models:

Sparc V8 (TSO,PSO): Membar
Sparc V9 (RMO):

 Membar #LoadLoad, Membar #LoadStore
 Membar #StoreLoad, Membar #StoreStore

PowerPC (WO): Sync, EIEIO

Memory fences are expensive operations, however, one
pays the cost of serialization only when it is required

April 8, 2010 CS152, Spring 2010
22

Using Memory Fences

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 MembarSS
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 MembarLL
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

April 8, 2010 CS152, Spring 2010
23

Mutual Exclusion Using Load/Store

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
 ...
c1=1;

L: if c2=1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1=1 then go to L
 < critical section>
c2=0;

April 8, 2010 CS152, Spring 2010
24

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

•  Deadlock is not possible but with a low probability
 a livelock may occur.

•  An unlucky process may never get to enter the
 critical section ⇒ 	

 	

 	

starvation

Process 1
 ...

L: c1=1;
if c2=1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1=1 then

 { c2=0; go to L}
 < critical section>
c2=0

April 8, 2010 CS152, Spring 2010
25

A Protocol for Mutual Exclusion
T. Dekker, 1966

Process 1
...
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

•  turn = i ensures that only process i can wait
•  variables c1 and c2 ensure mutual exclusion

 Solution for n processes was given by Dijkstra
 and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

April 8, 2010 CS152, Spring 2010
26

Analysis of Dekker’s Algorithm
... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

na
ri
o

1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
ce

na
ri
o

2

April 8, 2010 CS152, Spring 2010
27

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

Process i

choosing[i] = 1;
num[i] = max(num[0], …, num[N-1]) + 1;
choosing[i] = 0;

for(j = 0; j < N; j++) {
while(choosing[j]);
while(num[j] &&
 ((num[j] < num[i]) ||
 (num[j] == num[i] && j < i)));

}

num[i] = 0;

Initially num[j] = 0, for all j
Entry Code

Exit Code

April 8, 2010 CS152, Spring 2010
28

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

