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Uniprocessor Performance (SPECint) 

•  VAX          : 25%/year 1978 to 1986 
•  RISC + x86: 52%/year 1986 to 2002 
•  RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006	
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Parallel Processing: 
Déjà vu all over again? 

“… today’s processors … are nearing an impasse as technologies approach the 
speed of light..”  

David Mitchell, The Transputer: The Time Is Now (1989) 

•  Transputer had bad timing (Uniprocessor performance↑) 
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years 

•   “We are dedicating all of our future product development to multicore designs. 
… This is a sea change in computing”  

Paul Otellini, President, Intel (2005)  
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs) 
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs 

Manufacturer/Year	

 AMD/’09	

 Intel/’09	

 IBM/’09	

 Sun/’09	


Processors/chip	

 6	

 8	

 8	

 16	


Threads/Processor	

 1	

 2	

 4	

 8	


Threads/chip	

 6	

 16	

 32	

 128	
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symmetric 
•  All memory is equally far  
  away from all processors 
•  Any processor can do any I/O 
  (set up a DMA transfer) 

Symmetric Multiprocessors 

Memory 
I/O controller 

Graphics 
output 

CPU-Memory bus 

bridge 

Processor 

I/O controller I/O controller 

I/O bus 

Networks 

Processor 
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Synchronization 

The need for synchronization arises 
whenever  
there are concurrent processes in a system 

 (even in a uniprocessor system) 

Producer-Consumer: A consumer process  
must wait until the producer process has  
produced data 

Mutual Exclusion: Ensure that only one 
process uses a resource at a given time 

producer 

consumer 

Shared 
Resource 

P1 P2 
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A Producer-Consumer Example 

The program is written assuming 
instructions are executed in order.  

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

Problems? 
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A Producer-Consumer Example 
continued 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Can the tail pointer get updated 
before the item x is stored? 

Programmer assumes that if 3 happens after 2, then 4 
happens after 1. 

Problem sequences are: 
  2, 3, 4, 1 
  4, 1, 2, 3 

1 

2 

3 

4 



April 8, 2010 CS152, Spring 2010 
9 

Sequential Consistency 
A Memory Model 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 

      Leslie Lamport 

Sequential Consistency =  
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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Sequential Consistency 

Sequential concurrent tasks:  T1, T2 
Shared variables:  X, Y  (initially X = 0, Y = 10) 

T1:     T2: 
Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) 

what are the legitimate answers for X’ and Y’ ? 

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)}  ? 
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Sequential Consistency 

Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     ) 

      What are these in our example ? 

T1:     T2: 
Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) additional SC requirements 

Does (can) a system with caches or out-of-order  
execution capability provide a sequentially consistent  
view of the memory ? 

     more on this later 
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Multiple Consumer Example 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

What is wrong with this code? 

Critical section: 
Needs to be executed atomically 
by one consumer ⇒ locks 

tail head 
Producer 

  Rtail 

Consumer 
1 

  R    Rhead 

Rtail    

Consumer 
2 

  R    Rhead 

Rtail    
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Locks or Semaphores 
E. W. Dijkstra, 1965 

A semaphore is a non-negative integer, with the 
following operations: 

P(s): if s>0, decrement s by 1, otherwise wait 

V(s): increment s by 1 and wake up one of  
    the waiting processes 

P’s and V’s must be executed atomically, i.e., without 
•  interruptions or 
•  interleaved accesses to s by other processors   

initial value of s determines  
the maximum no. of processes 
in the critical section 

Process i   
P(s) 
    <critical section> 
V(s) 
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Implementation of Semaphores 

Semaphores (mutual exclusion) can be implemented  
using ordinary Load and Store instructions in the  
Sequential Consistency memory model. However,  
protocols for mutual exclusion are difficult to design... 

Simpler solution: 
  atomic read-modify-write instructions 

Test&Set (m), R:  
R ←  M[m]; 
if  R==0 then   

 M[m] ← 1; 

Swap (m), R:  
Rt ←  M[m]; 
M[m] ← R; 
R ←  Rt; 

Fetch&Add (m), RV, R: 
R ←  M[m]; 
M[m] ← R + RV; 

Examples: m is a memory location, R is a register 
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CS152 Administrivia 
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Critical 
Section 

P:   Test&Set (mutex),Rtemp 
 if (Rtemp!=0) goto P 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead  

V:  Store (mutex),0 
 process(R) 

Multiple Consumers Example 
using the Test&Set Instruction 

Other atomic read-modify-write instructions (Swap,  
Fetch&Add, etc.) can also implement P’s and V’s 

What if the process stops or is swapped out while 
in the critical section? 
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Nonblocking Synchronization 
Compare&Swap(m), Rt, Rs: 
 if (Rt==M[m]) 
     then  M[m]=Rs; 
   Rs=Rt ; 
   status ← success; 
     else  status ← fail; 

try:   Load Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rnewhead = Rhead+1 
 Compare&Swap(head), Rhead, Rnewhead 
 if (status==fail) goto try 
 process(R) 

status is an 
implicit 
argument  
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Load-reserve & Store-conditional 

Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-reserve Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional (head), Rhead 
 if (status==fail) goto try 
 process(R) 

Load-reserve R, (m): 
<flag, adr> ← <1, m>;  
R ← M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  

    reservation on m; 
   M[m] ← R;   
   status ← succeed; 

else  status ← fail; 
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Performance of Locks 
Blocking atomic read-modify-write instructions 

 e.g., Test&Set, Fetch&Add, Swap  
   vs 

Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap,  
         Load-reserve/Store-conditional 
   vs 

Protocols based on ordinary Loads and Stores 

Performance depends on several interacting factors: 
 degree of contention,  
 caches,  
 out-of-order execution of Loads and Stores 

   later ... 



April 8, 2010 CS152, Spring 2010 
20 

Issues in Implementing  
Sequential Consistency 

Implementation of SC is complicated by two issues 

•  Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a ≠ b 
Store(a); Load(b)  yes if a ≠ b 
Store(a); Store(b)  yes if a ≠ b 

•  Caches 
Caches can prevent the effect of a store from  
being seen by other processors 

M 

P P P P P P 
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Memory Fences 
Instructions to sequentialize memory accesses 

Processors with relaxed or weak memory models (i.e., 
permit Loads and Stores to different  addresses to be  
reordered) need to provide memory fence instructions  
to force the serialization of memory accesses 

       
Examples of processors with relaxed memory models: 

Sparc V8 (TSO,PSO): Membar  
Sparc V9 (RMO):  

 Membar #LoadLoad, Membar #LoadStore 
 Membar #StoreLoad, Membar #StoreStore 

PowerPC (WO):  Sync, EIEIO 

Memory fences are expensive operations, however, one  
pays the cost of serialization only when it is required 
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Using Memory Fences 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 MembarSS 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 MembarLL 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

ensures that tail ptr 
is not updated before  
x has been stored 

ensures that R is 
not loaded before  
x has been stored 
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Mutual Exclusion Using Load/Store  

A protocol based on two shared variables c1 and c2.  
Initially, both c1 and c2 are 0 (not busy) 

What is wrong? 

Process 1 
 ... 
c1=1; 

L:  if c2=1 then go to L 
  < critical section> 
c1=0; 

Process 2 
 ... 
c2=1; 

L:  if c1=1 then go to L 
  < critical section> 
c2=0; 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation  
(i.e. Process 1 sets c1 to 0) while waiting. 

•  Deadlock is not possible but with a low probability  
  a livelock may occur. 

•  An unlucky process may never get to enter the  
  critical section  ⇒ 	

 	

 	

starvation 

Process 1 
 ... 

L:  c1=1; 
if c2=1 then  

 { c1=0; go to L} 
  < critical section> 
c1=0 

Process 2 
 ... 

L:  c2=1; 
if c1=1 then  

 { c2=0; go to L} 
  < critical section> 
c2=0 
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A Protocol for Mutual Exclusion 
T. Dekker, 1966 

Process 1 
... 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

A protocol based on 3 shared variables c1, c2 and turn.  
Initially, both c1 and c2 are 0 (not busy) 

•  turn = i ensures that only process i can wait  
•  variables c1 and c2 ensure mutual exclusion 

 Solution for n processes was given by Dijkstra  
           and is quite tricky! 

Process 2 
... 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 
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Analysis of Dekker’s Algorithm 
...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 

S
ce

na
ri
o 

1 

...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 

S
ce

na
ri
o 

2 
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N-process Mutual Exclusion 
Lamport’s Bakery Algorithm 

Process i 

choosing[i] = 1; 
num[i] = max(num[0], …, num[N-1]) + 1; 
choosing[i] = 0; 

for(j = 0; j < N; j++)  { 
while( choosing[j] ); 
while( num[j] && 
            ( ( num[j] < num[i] ) || 
               ( num[j] == num[i] &&  j < i ) ) ); 

} 

num[i] = 0; 

Initially num[j] = 0, for all j 
Entry Code 

Exit Code 
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