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Recap: Sequential Consistency 
A Memory Model 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 

      Leslie Lamport 

Sequential Consistency =  
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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Recap: Sequential Consistency 

Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     ) 

      What are these in our example ? 

T1:     T2: 
Store (X), 1   (X =  1)        Load R1, (Y)   
Store (Y), 11 (Y = 11)        Store (Y’), R1 (Y’= Y) 

          Load R2, (X)  
          Store (X’), R2 (X’= X) 

additional SC requirements 
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Recap: Mutual Exclusion and Locks 
Want to guarantee only one process is active in a critical 
section 

•  Blocking atomic read-modify-write instructions 
 e.g., Test&Set, Fetch&Add, Swap  
   vs 

•  Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap, Load-reserve/Store-conditional 
   vs 

•  Protocols based on ordinary Loads and Stores 
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Issues in Implementing  
Sequential Consistency 

Implementation of SC is complicated by two issues 

•  Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a ≠ b 
Store(a); Load(b)  yes if a ≠ b 
Store(a); Store(b)  yes if a ≠ b 

•  Caches 
Caches can prevent the effect of a store from  
being seen by other processors 

M 

P P P P P P 

SC complications motivate architects to consider 
weak or relaxed memory models 
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Memory Fences 
Instructions to sequentialize memory accesses 

Processors with relaxed or weak memory models (i.e., 
permit Loads and Stores to different addresses to be  
reordered) need to provide memory fence instructions  
to force the serialization of memory accesses 

       
Examples of processors with relaxed memory models: 

Sparc V8 (TSO,PSO): Membar  
Sparc V9 (RMO):  

 Membar #LoadLoad, Membar #LoadStore 
 Membar #StoreLoad, Membar #StoreStore 

PowerPC (WO):  Sync, EIEIO 

Memory fences are expensive operations, however, one  
pays the cost of serialization only when it is required 
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Using Memory Fences 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 MembarSS 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 MembarLL 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

ensures that tail ptr 
is not updated before  
x has been stored 

ensures that R is 
not loaded before  
x has been stored 
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Memory Coherence in SMPs 

Suppose CPU-1 updates A to 200.   
  write-back:  memory and cache-2 have stale values 
  write-through:  cache-2 has a stale value 

Do these stale values matter? 
What is the view of shared memory for programming? 

cache-1 A  100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A  100 

memory A  100 
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Write-back Caches & SC 

•  T1 is executed  

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

cache-2 cache-1 memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

•  cache-1 writes back Y 
  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  cache-1 writes back X 

  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

•  T2 executed 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 

  Y =11 
  Y’=11  
  X = 0 
  X’= 0  

•  cache-2 writes back  
   X’ & Y’ 
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Write-through Caches & SC 
cache-2 
  Y =  
  Y’=  
  X = 0 
  X’=   

memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

cache-1 
  X= 0 
  Y=10 

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST X, 1 
  ST Y,11 

Write-through caches don’t preserve 
sequential consistency either 

•  T1 executed 
  Y =  
  Y’=  
  X = 0 
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

•  T2 executed   Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 
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Cache Coherence vs. 
Memory Consistency 
•  A cache coherence protocol ensures that all writes by 

one processor are eventually visible to other 
processors 

–  i.e., updates are not lost 

•  A memory consistency model gives the rules on 
when a write by one processor can be observed by a 
read on another 

–  Equivalently, what values can be seen by a load 

•  A cache coherence protocol is not enough to ensure 
sequential consistency 

–  But if sequentially consistent, then caches must be coherent 

•  Combination of cache coherence protocol plus 
processor memory reorder buffer implements a given 
machine’s memory consistency model 

11 
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Maintaining Cache Coherence 

Hardware support is required such that 
•  only one processor at a time has write  
  permission for a location 
•  no processor can load a stale copy of  
  the location after a write 

⇒  cache coherence protocols 
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Warmup: Parallel I/O 

 (DMA stands for Direct Memory Access, means the I/O device 
can read/write memory autonomous from the CPU) 

Either Cache or DMA can 
be the Bus Master and 
effect transfers 

 DISK 
 DMA 

Physical 
Memory 

Proc.  

R/W  

Data (D) Cache 

Address (A) 

A 
D 

R/W  

Page transfers 
occur while the 
Processor is running 

Memory 
   Bus 
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Problems with Parallel I/O 

Memory      Disk: Physical memory may be 
                              stale if cache copy is dirty 

Disk     Memory:  Cache may hold stale data and not 
   see memory writes  

 DISK 

 DMA 

Physical 
Memory 

Proc. 
Cache 

Memory 
   Bus 

Cached portions 
       of page 

 DMA transfers 
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Snoopy Cache Goodman 1983 

•  Idea: Have cache watch (or snoop upon) DMA 
transfers, and then “do the right thing” 

•  Snoopy cache tags are dual-ported 

 Proc.  

 Cache 

Snoopy read port 
attached to Memory 
Bus 

 Data 
(lines) 

Tags and 
    State 

A 

D 

R/W  

Used to drive Memory Bus 
when Cache is Bus Master 

A 

R/W  
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Snoopy Cache Actions for DMA 

Observed Bus        
   Cycle                 Cache State                    Cache Action 

                      Address not cached 

DMA Read         Cached, unmodified 

Memory      Disk    Cached, modified 
                      Address not cached 

DMA Write          Cached, unmodified 
Disk     Memory     Cached, modified 

No action 

No action 

No action 

Cache intervenes 

Cache purges its copy 

??? 
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CS152 Administrivia 
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Shared Memory Multiprocessor 

   Use snoopy mechanism to keep all processors’ 
view of memory coherent 

M1 

M2 

M3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Memory 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache 

 DISKS 
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Snoopy Cache Coherence Protocols 

write miss:   
the address is invalidated in all other 
caches before the write is performed 

read miss:   
if a dirty copy is found in some cache, a write-
back is performed before the memory is read   
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Cache State Transition Diagram 
The MSI protocol 

M 

S I 

M: Modified 
S: Shared  
 I: Invalid 

Each cache line has state bits 

Address tag 
state 
 bits Write miss 

(P1 gets line from memory) 

Other processor 
intent to write 
(P1 writes back) 

 Read miss 
(P1 gets line from memory) 

Other processor 
intent to write 

Read by any 
 processor 

P1 reads 
or writes 

Cache state in 
processor P1 

Other processor reads 
(P1 writes back) 
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Two Processor Example 
(Reading and writing the same cache line) 

M 

S I 

Write miss 

 Read 
 miss 

P2 intent to write 

P2 reads, 
P1 writes back 

P1 reads 
or writes 

P2 intent to write 

P1 

M 

S I 

Write miss 

 Read 
 miss 

P1 intent to write 

P1 reads, 
P2 writes back 

P2 reads 
or writes 

P1 intent to write 

P2 

P1 reads 
P1 writes 
P2 reads 
P2 writes 

P1 writes 
P2 writes 

P1 reads 

P1 writes 
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Observation 

•  If a line is in the M state then no other cache can have 
a copy of the line! 

–   Memory stays coherent, multiple differing copies cannot exist 

M 

S I 

Write miss 

Other processor 
intent to write 

 Read 
 miss 

Other processor 
intent to write 

Read by any 
 processor 

P1 reads 
or writes Other processor reads 

P1 writes back 



April 15, 2010 CS152, Spring 2010 
23 

MESI: An Enhanced MSI protocol 
 increased performance for private data 

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 
state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 
P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, P1 
writes back 
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Snooper Snooper Snooper Snooper 

Optimized Snoop with Level-2 Caches 

•  Processors often have two-level caches 
•  small L1, large L2 (usually both on chip now) 

•  Inclusion property: entries in L1 must be in L2 
      invalidation in L2 ⇒  invalidation in L1 
•  Snooping on L2 does not affect CPU-L1 bandwidth 

    What problem could occur? 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 
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Intervention 

When a read-miss for A occurs in cache-2,  
a read request for A is placed on the bus 

•  Cache-1 needs to supply & change its state to shared 
•  The memory may respond to the request also! 

Does memory know it has stale data? 

Cache-1 needs to intervene through memory 
controller to supply correct data to cache-2 

cache-1 A  200 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 

memory (stale data) A  100 
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False Sharing 

state   blk addr  data0  data1        ...     dataN 

A cache block contains more than one word 

Cache-coherence is done at the block-level and 
not word-level 

Suppose M1 writes wordi and M2 writes wordk and 
both words have the same block address. 

What can happen? 
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Synchronization and Caches: 
 Performance Issues  

Cache-coherence protocols will cause mutex to ping-pong 
between P1’s and P2’s caches. 

Ping-ponging can be reduced by first reading the mutex 
location (non-atomically) and executing a swap only if it is 
found to be zero.  

cache 

Processor 1 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 2 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 3 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

          CPU-Memory Bus 

mutex=1 cache cache 
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Load-reserve & Store-conditional 

If the snooper sees a store transaction to the address 
in the reserve register, the reserve bit is set to 0 

•  Several processors may reserve ‘a’ simultaneously 
•  These instructions are like ordinary loads and stores 
  with respect to the bus traffic 

Can implement reservation by using cache hit/miss, no 
additional hardware required (problems?) 

Special register(s) to hold reservation flag and 
address, and the outcome of store-conditional 

Load-reserve R, (a): 
<flag, adr> ← <1, a>;  
R ← M[a]; 

Store-conditional (a), R: 
if <flag, adr> == <1, a>  
then  cancel other procs’  

    reservation on a; 
   M[a] ← <R>;   
   status ← succeed; 

else  status ← fail; 
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Blocking caches 
One request at a time + CC ⇒  SC 

Non-blocking caches  
Multiple requests (different addresses) concurrently + CC 
                                ⇒  Relaxed memory models 

CC ensures that all processors observe the same 
order of loads and stores to an address  

Out-of-Order Loads/Stores & CC 

Cache 
Memory pushout (Wb-rep) 

load/store 
buffers 

CPU 

(S-req, E-req) 

(S-rep, E-rep) 

Wb-req, Inv-req, Inv-rep 
snooper 

(I/S/E) 

CPU/Memory 
Interface 
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