
April 15, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 20: Snoopy Caches

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 15, 2010 CS152, Spring 2010
2

Recap: Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

April 15, 2010 CS152, Spring 2010
3

Recap: Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X)

additional SC requirements

April 15, 2010 CS152, Spring 2010
4

Recap: Mutual Exclusion and Locks
Want to guarantee only one process is active in a critical
section

•  Blocking atomic read-modify-write instructions
 e.g., Test&Set, Fetch&Add, Swap
 vs

•  Non-blocking atomic read-modify-write instructions
 e.g., Compare&Swap, Load-reserve/Store-conditional
 vs

•  Protocols based on ordinary Loads and Stores

April 15, 2010 CS152, Spring 2010
5

Issues in Implementing
Sequential Consistency

Implementation of SC is complicated by two issues

•  Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

•  Caches
Caches can prevent the effect of a store from
being seen by other processors

M

P P P P P P

SC complications motivate architects to consider
weak or relaxed memory models

April 15, 2010 CS152, Spring 2010
6

Memory Fences
Instructions to sequentialize memory accesses

Processors with relaxed or weak memory models (i.e.,
permit Loads and Stores to different addresses to be
reordered) need to provide memory fence instructions
to force the serialization of memory accesses

Examples of processors with relaxed memory models:

Sparc V8 (TSO,PSO): Membar
Sparc V9 (RMO):

 Membar #LoadLoad, Membar #LoadStore
 Membar #StoreLoad, Membar #StoreStore

PowerPC (WO): Sync, EIEIO

Memory fences are expensive operations, however, one
pays the cost of serialization only when it is required

April 15, 2010 CS152, Spring 2010
7

Using Memory Fences

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 MembarSS
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 MembarLL
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

April 15, 2010 CS152, Spring 2010
8

Memory Coherence in SMPs

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

April 15, 2010 CS152, Spring 2010
9

Write-back Caches & SC

•  T1 is executed

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

cache-2 cache-1 memory
 X = 0
 Y =10
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

•  cache-1 writes back Y
 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  cache-1 writes back X

 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

•  T2 executed

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

 Y =11
 Y’=11
 X = 0
 X’= 0

•  cache-2 writes back
 X’ & Y’

April 15, 2010 CS152, Spring 2010
10

Write-through Caches & SC
cache-2
 Y =
 Y’=
 X = 0
 X’=

memory
 X = 0
 Y =10
 X’=
 Y’=

cache-1
 X= 0
 Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST X, 1
 ST Y,11

Write-through caches don’t preserve
sequential consistency either

•  T1 executed
 Y =
 Y’=
 X = 0
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

•  T2 executed Y = 11
 Y’= 11
 X = 0
 X’= 0

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

April 15, 2010 CS152, Spring 2010

Cache Coherence vs.
Memory Consistency
•  A cache coherence protocol ensures that all writes by

one processor are eventually visible to other
processors

–  i.e., updates are not lost

•  A memory consistency model gives the rules on
when a write by one processor can be observed by a
read on another

–  Equivalently, what values can be seen by a load

•  A cache coherence protocol is not enough to ensure
sequential consistency

–  But if sequentially consistent, then caches must be coherent

•  Combination of cache coherence protocol plus
processor memory reorder buffer implements a given
machine’s memory consistency model

11

April 15, 2010 CS152, Spring 2010
12

Maintaining Cache Coherence

Hardware support is required such that
•  only one processor at a time has write
 permission for a location
•  no processor can load a stale copy of
 the location after a write

⇒ cache coherence protocols

April 15, 2010 CS152, Spring 2010
13

Warmup: Parallel I/O

 (DMA stands for Direct Memory Access, means the I/O device
can read/write memory autonomous from the CPU)

Either Cache or DMA can
be the Bus Master and
effect transfers

 DISK
 DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

Page transfers
occur while the
Processor is running

Memory
 Bus

April 15, 2010 CS152, Spring 2010
14

Problems with Parallel I/O

Memory Disk: Physical memory may be
 stale if cache copy is dirty

Disk Memory: Cache may hold stale data and not
 see memory writes

 DISK

 DMA

Physical
Memory

Proc.
Cache

Memory
 Bus

Cached portions
 of page

 DMA transfers

April 15, 2010 CS152, Spring 2010
15

Snoopy Cache Goodman 1983

•  Idea: Have cache watch (or snoop upon) DMA
transfers, and then “do the right thing”

•  Snoopy cache tags are dual-ported

 Proc.

 Cache

Snoopy read port
attached to Memory
Bus

 Data
(lines)

Tags and
 State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

April 15, 2010 CS152, Spring 2010
16

Snoopy Cache Actions for DMA

Observed Bus
 Cycle Cache State Cache Action

 Address not cached

DMA Read Cached, unmodified

Memory Disk Cached, modified
 Address not cached

DMA Write Cached, unmodified
Disk Memory Cached, modified

No action

No action

No action

Cache intervenes

Cache purges its copy

???

April 15, 2010 CS152, Spring 2010
17

CS152 Administrivia

April 15, 2010 CS152, Spring 2010
18

Shared Memory Multiprocessor

 Use snoopy mechanism to keep all processors’
view of memory coherent

M1

M2

M3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

April 15, 2010 CS152, Spring 2010
19

Snoopy Cache Coherence Protocols

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:
if a dirty copy is found in some cache, a write-
back is performed before the memory is read

April 15, 2010 CS152, Spring 2010
20

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has state bits

Address tag
state
 bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

 Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

April 15, 2010 CS152, Spring 2010
21

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

 Read
 miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

April 15, 2010 CS152, Spring 2010
22

Observation

•  If a line is in the M state then no other cache can have
a copy of the line!

–  Memory stays coherent, multiple differing copies cannot exist

M

S I

Write miss

Other processor
intent to write

 Read
 miss

Other processor
intent to write

Read by any
 processor

P1 reads
or writes Other processor reads

P1 writes back

April 15, 2010 CS152, Spring 2010
23

MESI: An Enhanced MSI protocol
 increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write, P1
writes back

April 15, 2010 CS152, Spring 2010
24

Snooper Snooper Snooper Snooper

Optimized Snoop with Level-2 Caches

•  Processors often have two-level caches
•  small L1, large L2 (usually both on chip now)

•  Inclusion property: entries in L1 must be in L2
 invalidation in L2 ⇒ invalidation in L1
•  Snooping on L2 does not affect CPU-L1 bandwidth

 What problem could occur?

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

April 15, 2010 CS152, Spring 2010
25

Intervention

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

•  Cache-1 needs to supply & change its state to shared
•  The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

cache-1 A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data) A 100

April 15, 2010 CS152, Spring 2010
26

False Sharing

state blk addr data0 data1 ... dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

April 15, 2010 CS152, Spring 2010
27

Synchronization and Caches:
 Performance Issues

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

cache

Processor 1
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 2
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 3
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

 CPU-Memory Bus

mutex=1 cache cache

April 15, 2010 CS152, Spring 2010
28

Load-reserve & Store-conditional

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

•  Several processors may reserve ‘a’ simultaneously
•  These instructions are like ordinary loads and stores
 with respect to the bus traffic

Can implement reservation by using cache hit/miss, no
additional hardware required (problems?)

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a):
<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

 reservation on a;
 M[a] ← <R>;
 status ← succeed;

else status ← fail;

April 15, 2010 CS152, Spring 2010
29

Blocking caches
One request at a time + CC ⇒ SC

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
 ⇒ Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address

Out-of-Order Loads/Stores & CC

Cache
Memory pushout (Wb-rep)

load/store
buffers

CPU

(S-req, E-req)

(S-rep, E-rep)

Wb-req, Inv-req, Inv-rep
snooper

(I/S/E)

CPU/Memory
Interface

April 15, 2010 CS152, Spring 2010
30

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

