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Recap: Snoopy Cache Protocols 

   Use snoopy mechanism to keep all processors’ 
view of memory coherent 
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MESI: An Enhanced MSI protocol 
 increased performance for private data 

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 
state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 
P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, P1 
writes back 
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Performance of Symmetric Shared-Memory 
Multiprocessors 
Cache performance is combination of: 
1.  Uniprocessor cache miss traffic 
2.  Traffic caused by communication  

–  Results in invalidations and subsequent cache misses 

•  Adds 4th C: coherence miss 
–  Joins Compulsory, Capacity, Conflict 
–  (Sometimes called a Communication miss) 
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Coherency Misses 
1.  True sharing misses arise from the communication 

of data through the cache coherence mechanism 
•  Invalidates due to 1st write to shared block 
•  Reads by another CPU of modified block in different cache 
•  Miss would still occur if block size were 1 word 

2.  False sharing misses when a block is invalidated 
because some word in the block, other than the one 
being read, is written into 
•  Invalidation does not cause a new value to be communicated, but 

only causes an extra cache miss 
•  Block is shared, but no word in block is actually shared 

 ⇒ miss would not occur if block size were 1 word 
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Example: True v. False Sharing v. 
Hit? 

Time P1 P2 True, False, Hit? Why? 
1 Write x1 

2 Read x2 

3 Write x1 

4 Write x2 

5 Read x2 

•  Assume x1 and x2 in same cache block.  
  P1 and P2 both read x1 and x2 before. 

True miss; invalidate x1 in P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

True miss; invalidate x2 in P1 
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MP Performance 4 Processor  
Commercial Workload: OLTP, Decision 
Support (Database), Search Engine 
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•  True sharing and 
false sharing 
unchanged going 
from 1 MB to 8 MB 
(L3 cache) 

•  Uniprocessor 
cache misses 
improve with 
cache size 
increase (Instruction, 
Capacity/Conflict, 
Compulsory)  
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MP Performance 2MB Cache  
Commercial Workload: OLTP, Decision 
Support (Database), Search Engine 

•  True sharing, 
false sharing 
increase going 
from 1 to 8 
CPUs 
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A Cache Coherent System Must: 
•  Provide set of states, state transition diagram, and 

actions 
•  Manage coherence protocol 

–  (0)  Determine when to invoke coherence protocol 
–  (a)  Find info about state of address in other caches to determine action 

»  whether need to communicate with other cached copies 
–  (b)  Locate the other copies 
–  (c)  Communicate with those copies  (invalidate/update) 

•  (0) is done the same way on all systems 
–  state of the line is maintained in the cache 
–  protocol is invoked if an “access fault” occurs on the line 

•  Different approaches distinguished by (a) to (c) 
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Bus-based Coherence 

•  All of (a), (b), (c) done through broadcast on bus 
–  faulting processor sends out a “search”  
–  others respond to the search probe and take necessary action 

•  Could do it in scalable network too 
–  broadcast to all processors, and let them respond 

•  Conceptually simple, but broadcast doesn’t scale with 
number of processors, P 

–  on bus, bus bandwidth doesn’t scale 
–  on scalable network, every fault leads to at least P network 

transactions 

•  Scalable coherence: 
–  can have same cache states and state transition diagram 
–  different mechanisms to manage protocol 
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Scalable Approach: Directories 
•   Every memory block has associated directory 

information 
–  keeps track of copies of cached blocks and their states 
–  on a miss, find directory entry, look it up, and communicate only 

with the nodes that have copies if necessary 
–  in scalable networks, communication with directory and copies is 

through network transactions 

•  Many alternatives for organizing directory information 
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Basic Operation of Directory 

•  k processors.   
•  With each cache-block in memory:  

k  presence-bits, 1 dirty-bit 
•  With each cache-block in cache:     

1 valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i: 
• If dirty-bit OFF then { read from main memory; turn p[i] ON; } 
• if dirty-bit ON   then { recall line from dirty proc (downgrade cache 

state to shared); update memory; turn dirty-bit OFF; turn p[i] ON; 
supply recalled data to i;} 

• Write to main memory by processor i: 
• If dirty-bit OFF then {send invalidations to all caches that have the 

block; turn dirty-bit ON; supply data to i; turn p[i] ON; ... } 
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CS152 Administrivia 
•  Final quiz, Thursday April 29 

–  Multiprocessors, Memory models, Cache coherence 
–  Lectures 19-21, PS 5, Lab 5 

•  Next lecture, “Virtual Machines”, Thursday April 22 
•  Last lecture, “Putting it all Together”, Tuesday April 27 

–  Summary of the course 
–  Case Study: Intel Nehalem 
–  HKN Course Survey 
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Directory Cache Protocol 
(Handout 6) 

•  Assumptions: Reliable network, FIFO message 
delivery between any given source-destination pair 
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Cache States 

For each cache line, there are 4 possible states: 
– C-invalid (= Nothing): The accessed data is not resident in the 

cache. 
– C-shared (= Sh): The accessed data is resident in the cache, 

and possibly also cached at other sites. The data in memory 
is valid. 

– C-modified (= Ex): The accessed data is exclusively resident 
in this cache, and has been modified. Memory does not have 
the most up-to-date data. 

– C-transient (= Pending): The accessed data is in a transient 
state (for example, the site has just issued a protocol request, 
but has not received the corresponding protocol reply). 
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Home directory states 
•  For each memory block, there are 4 possible 

states: 
– R(dir): The memory block is shared by the sites specified in 

dir (dir is a set of sites). The data in memory is valid in this 
state.  If dir is empty (i.e., dir = ε), the memory block is not 
cached by any site. 

– W(id): The memory block is exclusively cached at site id, 
and has been modified at that site. Memory does not have 
the most up-to-date data. 

–  TR(dir): The memory block is in a transient state waiting for 
the acknowledgements to the invalidation requests that the 
home site has issued. 

–  TW(id): The memory block is in a transient state waiting for 
a block exclusively cached at site id (i.e., in C-modified 
state) to make the memory block at the home site up-to-
date. 
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Category Messages 

Cache to Memory 
Requests 

ShReq, ExReq 

Memory to Cache 
Requests 

WbReq, InvReq, FlushReq 

Cache to Memory 
Responses 

WbRep(v), InvRep, FlushRep(v) 

Memory to Cache 
Responses 

ShRep(v), ExRep(v) 

Protocol Messages 
There are 10 different protocol messages:  
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Cache State Transitions 
(from invalid state) 
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Cache State Transitions 
(from shared state) 
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Cache State Transitions 
(from exclusive state) 
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Cache Transitions 
(from pending) 
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Home Directory State Transitions 

Messages sent from site id 
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Home Directory State Transitions 

Messages sent from site id 
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Home Directory State Transitions 

Messages sent from site id 
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Home Directory State Transitions 

Messages sent from site id 
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