
April 20, 2010 CS152, Spring 2010

CS 152 Computer Architecture
and Engineering

 Lecture 21: Directory-Based
Cache Protocols

Krste Asanovic
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152

April 20, 2010 CS152, Spring 2010
2

Recap: Snoopy Cache Protocols

 Use snoopy mechanism to keep all processors’
view of memory coherent

M1

M2

M3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

April 20, 2010 CS152, Spring 2010
3

MESI: An Enhanced MSI protocol
 increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write, P1
writes back

April 20, 2010 CS152, Spring 2010
4

Performance of Symmetric Shared-Memory
Multiprocessors
Cache performance is combination of:
1.  Uniprocessor cache miss traffic
2.  Traffic caused by communication

–  Results in invalidations and subsequent cache misses

•  Adds 4th C: coherence miss
–  Joins Compulsory, Capacity, Conflict
–  (Sometimes called a Communication miss)

April 20, 2010 CS152, Spring 2010
5

Coherency Misses
1.  True sharing misses arise from the communication

of data through the cache coherence mechanism
•  Invalidates due to 1st write to shared block
•  Reads by another CPU of modified block in different cache
•  Miss would still occur if block size were 1 word

2.  False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into
•  Invalidation does not cause a new value to be communicated, but

only causes an extra cache miss
•  Block is shared, but no word in block is actually shared

 ⇒ miss would not occur if block size were 1 word

April 20, 2010 CS152, Spring 2010
6

Example: True v. False Sharing v.
Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

•  Assume x1 and x2 in same cache block.
 P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

April 20, 2010 CS152, Spring 2010
7

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 MB 2 MB 4 MB 8 MB
Cache size

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

•  True sharing and
false sharing
unchanged going
from 1 MB to 8 MB
(L3 cache)

•  Uniprocessor
cache misses
improve with
cache size
increase (Instruction,
Capacity/Conflict,
Compulsory)

April 20, 2010 CS152, Spring 2010
8

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

•  True sharing,
false sharing
increase going
from 1 to 8
CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

April 20, 2010 CS152, Spring 2010
9

A Cache Coherent System Must:
•  Provide set of states, state transition diagram, and

actions
•  Manage coherence protocol

–  (0) Determine when to invoke coherence protocol
–  (a) Find info about state of address in other caches to determine action

»  whether need to communicate with other cached copies
–  (b) Locate the other copies
–  (c) Communicate with those copies (invalidate/update)

•  (0) is done the same way on all systems
–  state of the line is maintained in the cache
–  protocol is invoked if an “access fault” occurs on the line

•  Different approaches distinguished by (a) to (c)

April 20, 2010 CS152, Spring 2010
10

Bus-based Coherence

•  All of (a), (b), (c) done through broadcast on bus
–  faulting processor sends out a “search”
–  others respond to the search probe and take necessary action

•  Could do it in scalable network too
–  broadcast to all processors, and let them respond

•  Conceptually simple, but broadcast doesn’t scale with
number of processors, P

–  on bus, bus bandwidth doesn’t scale
–  on scalable network, every fault leads to at least P network

transactions

•  Scalable coherence:
–  can have same cache states and state transition diagram
–  different mechanisms to manage protocol

April 20, 2010 CS152, Spring 2010
11

Scalable Approach: Directories
•  Every memory block has associated directory

information
–  keeps track of copies of cached blocks and their states
–  on a miss, find directory entry, look it up, and communicate only

with the nodes that have copies if necessary
–  in scalable networks, communication with directory and copies is

through network transactions

•  Many alternatives for organizing directory information

April 20, 2010 CS152, Spring 2010
12

Basic Operation of Directory

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit • ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (downgrade cache

state to shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then {send invalidations to all caches that have the

block; turn dirty-bit ON; supply data to i; turn p[i] ON; ... }

April 20, 2010 CS152, Spring 2010
13

CS152 Administrivia
•  Final quiz, Thursday April 29

–  Multiprocessors, Memory models, Cache coherence
–  Lectures 19-21, PS 5, Lab 5

•  Next lecture, “Virtual Machines”, Thursday April 22
•  Last lecture, “Putting it all Together”, Tuesday April 27

–  Summary of the course
–  Case Study: Intel Nehalem
–  HKN Course Survey

April 20, 2010 CS152, Spring 2010
14

Directory Cache Protocol
(Handout 6)

•  Assumptions: Reliable network, FIFO message
delivery between any given source-destination pair

CPU

Cache

Interconnection Network

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

April 20, 2010 CS152, Spring 2010
15

Cache States

For each cache line, there are 4 possible states:
– C-invalid (= Nothing): The accessed data is not resident in the

cache.
– C-shared (= Sh): The accessed data is resident in the cache,

and possibly also cached at other sites. The data in memory
is valid.

– C-modified (= Ex): The accessed data is exclusively resident
in this cache, and has been modified. Memory does not have
the most up-to-date data.

– C-transient (= Pending): The accessed data is in a transient
state (for example, the site has just issued a protocol request,
but has not received the corresponding protocol reply).

April 20, 2010 CS152, Spring 2010
16

Home directory states
•  For each memory block, there are 4 possible

states:
– R(dir): The memory block is shared by the sites specified in

dir (dir is a set of sites). The data in memory is valid in this
state. If dir is empty (i.e., dir = ε), the memory block is not
cached by any site.

– W(id): The memory block is exclusively cached at site id,
and has been modified at that site. Memory does not have
the most up-to-date data.

–  TR(dir): The memory block is in a transient state waiting for
the acknowledgements to the invalidation requests that the
home site has issued.

–  TW(id): The memory block is in a transient state waiting for
a block exclusively cached at site id (i.e., in C-modified
state) to make the memory block at the home site up-to-
date.

April 20, 2010 CS152, Spring 2010
17

Category Messages

Cache to Memory
Requests

ShReq, ExReq

Memory to Cache
Requests

WbReq, InvReq, FlushReq

Cache to Memory
Responses

WbRep(v), InvRep, FlushRep(v)

Memory to Cache
Responses

ShRep(v), ExRep(v)

Protocol Messages
There are 10 different protocol messages:

April 20, 2010 CS152, Spring 2010
18

Cache State Transitions
(from invalid state)

April 20, 2010 CS152, Spring 2010
19

Cache State Transitions
(from shared state)

April 20, 2010 CS152, Spring 2010
20

Cache State Transitions
(from exclusive state)

April 20, 2010 CS152, Spring 2010
21

Cache Transitions
(from pending)

April 20, 2010 CS152, Spring 2010
22

Home Directory State Transitions

Messages sent from site id

April 20, 2010 CS152, Spring 2010
23

Home Directory State Transitions

Messages sent from site id

April 20, 2010 CS152, Spring 2010
24

Home Directory State Transitions

Messages sent from site id

April 20, 2010 CS152, Spring 2010
25

Home Directory State Transitions

Messages sent from site id

April 20, 2010 CS152, Spring 2010
26

Acknowledgements
•  These slides contain material developed and

copyright by:
–  Arvind (MIT)
–  Krste Asanovic (MIT/UCB)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)
–  David Patterson (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

