

CS 152 Computer Architecture and Engineering

Lecture 23: Putting it all together: Intel Nehalem

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~krste http://inst.cs.berkeley.edu/~cs152

Intel Nehalem

- Review entire semester by looking at most recent microprocessor from Intel
- Nehalem is code name for microarchitecture at heart of Core i7 and Xeon 5500 series server chips
- First released at end of 2008

 Figures/Info from Intel, David Kanter at Real World Technologies.

Nehalem System Example: Apple Mac Pro Desktop 2009

Two Nehalem Chips ("Sockets"), each containing four processors ("cores") running at up to 2.93GHz Each chip has three DRAM channels attached, each 8 bytes wide at 1.066Gb/s (3*8.5GB/s). Can have up to two "QuickPath" point-point system DIMMs on each channel interconnect between CPUs and I/O. (up to 4GB/DIMM) Up to 25.6 GB/s per link. I/O Hub PCI Express connections for Graphics cards and other extension boards. Up to 8 GB/s per slot. Disk drives attached with 3Gb/s serial ATA link Controller

Slower peripherals (Ethernet, USB, Firewire, WiFi, Bluetooth, Audio)

Nehalem Die Photo

GT/s: gigatransfers per second

Front-End Instruction Fetch & Decode

Branch Prediction

- Part of instruction fetch unit
- Several different types of branch predictor
 - Details not public
- Two-level BTB
- Loop count predictor
 - How many backwards taken branches before loop exit
 - (Also predictor for length of microcode loops, e.g., string move)
- Return Stack Buffer
 - Holds subroutine targets
 - Renames the stack buffer so that it is repaired after mispredicted returns
 - Separate return stack buffer for each SMT thread

x86 Decoding

- Translate up to 4 x86 instructions into uOPS each cycle
- Only first x86 instruction in group can be complex (maps to 1-4 uOPS), rest must be simple (map to one uOP)
- Even more complex instructions, jump into microcode engine which spits out stream of uOPS

Split x86 in small uOPs, then fuse back into bigger units

Perf

(Energy

Intel Developer

ADVANTAGE

- Instruction Load Reduced ~ 15%**
- Micro-Ops Reduced ~ 10%**

Loop Stream Detectors save Power

Intel® Core™2 Loop Stream Detector

Intel Core Microarchitecture (Nehalem) Loop Stream Detector

Out-of-Order Execution Engine

SMT effects in OoO Execution Core

- Reorder buffer (remembers program order and exception status for in-order commit) has 128 entries divided statically and equally between both SMT threads
- Reservation stations (instructions waiting for operands for execution) have 36 entries competitively shared by threads

Nehalem Memory Hierarchy Overview

All Sockets can Access all Data

~60ns Local Memory Access

Remote Memory Access ~100ns

Core's Private Memory System

Cache Hierarchy Latencies

- L1 32KB 8-way, latency 4 cycles
- L2 256KB 8-way, latency <12 cycles
- L3 8MB, 16-way, latency 30-40 cycles
- DRAM, latency ~180-200 cycles

Nehalem Virtual Memory Details

- Implements 48-bit virtual address space, 40-bit physical address space
- Two-level TLB
- I-TLB (L1) has shared 128 entries 4-way associative for 4KB pages, plus 7 dedicated fully-associative entries per SMT thread for large page (2/4MB) entries
- D-TLB (L1) has 64 entries for 4KB pages and 32 entries for 2/4MB pages, both 4-way associative, dynamically shared between SMT threads
- Unified L2 TLB has 512 entries for 4KB pages only, also 4-way associative
- Additional support for system-level virtual machines

Virtualization Support

- TLB entries tagged with virtual machine and address space ID
 - No need to flush on context switches between VMs
- Hardware page table walker can walk guest-physical to host-physical mapping tables
 - Fewer traps to hypervisor

Core Area Breakdown

(Nehalem) Turbo Mode

Power Gating

Zero power for inactive cores

Turbo Mode

In response to workload adds additional performance bins within headroom

No Turbo

Workload Lightly Threaded or < TDP

Advice: Get involved in research

E.g.,

- RAD Lab data center
- Par Lab parallel clients
- AMP Lab algorithms, machines, people
- LoCAL networking energy

 Undergrad research experience is the most important part of application to top grad schools, and fun too.

End of CS152

- Final Quiz 5 on Thursday (lectures 19, 20, 21)
- HKN survey to follow.
- Thanks for all your feedback we'll keep trying to make CS152 better.