
CS 152 Laboratory Exercise 1

Professor: Krste Asanovic
TAs: Albert Magyar and David Biancolin

Department of Electrical Engineering & Computer Science
University of California, Berkeley

February 1, 2019

1 Introduction and goals

The goal of this laboratory assignment is to familiarize you with the Chisel simulation environment
while also allowing you to conduct some simple experiments. By modifying an existing instruction
tracer script, you will collect instruction mix statistics and make some architectural recommenda-
tions based on the results.

The lab has two sections, a directed portion and an open-ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open-ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report
for those problems. For the open-ended portion of each lab, students will work individually or in
groups of two or three. Each group will turn in a single report for the open-ended portion of the
lab. Students are free to take part in different groups for different lab assignments.

1.1 Graded Items

You will turn in a hard copy of your results at the beginning of class on the due date. Please label
each section of the results clearly. The directed items need to be turned in for evaluation. Your
group only needs to turn in one of the problems found in the Open-Ended Portion.

1. (Directed) Problem 4.4: recorded instruction mixes for each benchmark and answers

2. (Directed) Problem 4.5: thought problem answers

3. (Directed) Problem 4.6: CPI analysis answers

4. (Directed) Problem 4.7: design problem answers

5. (Open-ended) Problem 5.1: source code and recorded ratio

6. (Open-ended) Problem 5.2: data and the modified section of Chisel source code

7. (Open-ended) Problem 5.3: instruction definition, test code, worksheet, modified section of
Chisel source code

8. (Open-ended) Problem 5.4: design proposal and supporting data

9. (Directed) Problem 6: Feedback on this lab

1

Lab reports must be in readable English and not raw dumps of log-files. Your lab reports must
be typed and the open-ended portion must not exceed 6 pages. Charts, tables, and figures -
when appropriate - are great ways to succinctly summarize your data.

2 The RISC-V Instruction Set Architecture

The processors in this lab that you will be studying implement the RISC-V ISA, developed at UC
Berkeley for use in education, research, and industry.

An entire toolchain is provided. The riscv64-unknown-elf-gcc, riscv64-unknown-elf-g++
cross-compilers build new binaries from RISC-V assembly, C, and C++ source codes. The
riscv64-unknown-elf-objdump tool can disassemble existing RISC-V binaries to show the exact
sequence of instructions being executed.

The ISA simulator riscv-isa-sim also known as spike can execute RISC-V binaries. The
ISA simulator serves as the golden reference for the ISA. It is not cycle-accurate, but it executes
very quickly. The front-end server, fesvr, loads a RISC-V binary and connects to either the ISA
simulator or a Chisel-created simulator.

The RISC-V ISA manual can be found in the “resources” section of the CS 152 website or
directly at http://riscv.org/spec/riscv-spec-v2.0.pdf. For Lab 1, all processors implement
the 32-bit variant, known as RV32.

3 Chisel

Chisel is a new hardware construction language developed at UC Berkeley for the rapid design
and development of hardware. Chisel raises the level of abstraction by allowing designers to
utilize concepts such as object orientation, functional programming, parameterized types, and
type inference. Unlike HDL languages such as Verilog which were designed first to be simulation
languages, Chisel was designed to construct actual hardware.

Chisel can generate low-level Verilog code for mapping designs to FPGA, ASICs, or cycle-
accurate software simulators like VCS or Verilator.

Chisel, an acronym for Constructing Hardware In a Scala Embedded Language, is a domain-
specific language embedded inside of Scala. Chisel code describing a processor is actually a legal
Scala program whose execution outputs Verilog code.

3.1 Chisel in This Lab

Provided with this lab are four different processors: a 1-stage pipeline, a 2-stage pipeline, a 5-stage
pipeline, and a micro-coded pipeline. All are implemented in Chisel.

In this lab, you will compile the provided Chisel processors into Verilog software simula-
tors, and use the simulators to quickly run cycle-accurate experiments regarding instruction mixes
and pipeline hazards. A tutorial on the Chisel language can be found at http://chisel.eecs.

berkeley.edu. Students will not be required to write Chisel code as part of this lab, beyond
changing and adding parameters as directed.

2

4 Directed Portion (30% of lab grade)

4.1 Terminology and conventions

Throughout this course, the term host refers to the machine on which you run the simulators, while
target refers to the simulated machine. For this lab, the host will be an instructional machine
(inst$), while the provided RISC-V processors are your target machines.

4.2 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server, which is where you will use Chisel

and the RISC-V toolchain. We will provide you with an instructional computing account for this
purpose. The tools for this lab were set up to run on the icluster machines (icluster[6-9].eecs.
berkeley.edu).

First, clone the lab materials. The --recursive flag is necessary in order to checkout the
submodules in the git directory.

inst$ cd ~

inst$ git clone --recursive ~cs152/sp19/lab1.git

inst$ cd lab1

inst$ source ~cs152/sp19/cs152.lab1.bashrc

inst$./configure

inst$ export LAB1ROOT=$PWD

We will refer to ~/lab1 as ${LAB1ROOT} in the rest of the handout to denote the location of
the Lab 1 directory.

3

The directory structure is shown below:

• ${LAB1ROOT}/

– Makefile

– src/ Chisel source code for each processor.

∗ common/Common source code shared between all processors.

∗ rv32 1stage/ Source code for the RISC-V 1-stage processor

∗ rv32 2stage/ ...

∗ rv32 5stage/ ...

∗ rv32 ucode/ ...

– emulator/

∗ common/Common emulation infrastructure shared between all processors.

∗ rv32 1stage/ C++ simulation tools and output files.

∗ rv32 2stage/ ...

∗ rv32 5stage/ ...

∗ rv32 ucode/ ...

– test/ Local source code for benchmarks and tests.

∗ custom-bmarks/ Local benchmarks written in C.

∗ custom-tests/ Local tests written in assembly.

– install/ Compiled assembly tests and benchmarks.

– doc/ Various documentation.

– project/ Scala voodoo. You can safely ignore this directory.

– sbt/ Scala voodoo. You can safely ignore this directory.

Of particular note is that the source code for the Chisel processors can be found in ${LAB1ROOT}/

src/. While you do not have to understand the code to do this assignment, it may be interesting
to see the entire workings of a processor. While it is not recommended that you modify any of the
processors while collecting data for them in the directed lab portion (except as directed), feel free in
your own time (or perhaps as part of the open-ended portion) to change and tweak the processors
as you see fit.

4

4.3 First Steps: Building the 1-Stage Processor

In this lab, five different processors are provided: a 1-stage processor, a 2-stage processor, a 3-stage
processor, a 5-stage processor, and a microcoded processor. The 5-stage processor implements both
a fully-bypassed pipeline and a no-bypassing/fully interlocked pipeline.

The following command will set up your bash environment, giving you access to the entire
CS152 lab toolchain. Run it before each session:1

inst$ source ~cs152/sp19/cs152.lab1.bashrc

Navigate to the ${LAB1ROOT} directory and execute the following command:

inst$ cd ${LAB1ROOT}/emulator/rv32_1stage

inst$ make run

If this is your first time running sbt, this command may take a while.2 The command make run

does the following:

• runs sbt (the Scala Build Tool) selects the rv32 1stage project, and runs the Chisel code
which generates a Verilog RTL description of the processor. The generated Verilog code can
be found in ${LAB1ROOT}/emulator/rv32_1stage/generated-src/.

• runs verilator, an open-source tool that compiles Verilog to cycle-accurate C++ simulation
code

• compiles the generated C++ code into a binary called emulator.

• runs the emulator binary, loading the provided RISC-V binaries into the simulated memory.
All of the RISC-V tests and benchmarks will be executed when calling “make run”.3

A PASSED should be generated by each program. If you see any FAILED, verify you are running
on a recommended instructional machine. Otherwise, contact your TA.

Building Other Processors

Depending on which directory you run commands in some environmental variables will be set
selecting the type of processor to build. If you are in ${LAB1ROOT}/ the make run command will
build all processors by default. To build specific other processors:

inst$ cd ${LAB1ROOT}/emulator/rv32_2stage

inst$ make run

This will build the 2 stage variant. The valid processor variants are rv32_1stage, rv32_2stage,
rv32_3stage, rv32_5stage, rv32_ucode.

1Or better yet, add this command to your bash profile.
2If you get a java.lang.OutOfMemoryError exception, run make run again.
3Which tests and benchmarks are executed can be found in the ${LAB1ROOT}/emulator/common/Makefile.include.

5

Figure 1: The Testing Environment. The front-end server (fesvr) loads the RISC-V binary from the Host

file system, starts the Target system simulator, and sends the RISC-V binary code to the Target simulator
to populate the simulated processor’s instruction memory with the program. Once the fesvr finishes sending
the test code, the fesvr resets the Target processor and the Target processor begins execution at a fixed
address in the program.

4.4 Instruction Mix Tracing Using the 1-Stage Processor

For this section of the lab you will track the instruction mixes of several RISC-V benchmark
programs provided to you.

inst$ cd ${LAB1ROOT}/emulator/rv32_1stage

inst$ make run

inst$ vim output/vvadd.riscv.out

We have provided a set of benchmarks for you to gather results from: median, multiply,
qsort, rsort, towers, dhrystone, and vvadd. Using your editor of choice, look at the output files
generated from make run.4 The processor state is written to the output file on every cycle. At the
end of the file, statistics from the “tracer” script can be found:

4To speed up parsing data out of all of the benchmark output files, type “grep \# output/*.riscv.out” to dump
all trace information to stdout.

6

#----------- Tracer Data -----------

#

CPI : 1.00

IPC : 1.00

cycles: 3029

#

Bubbles : 0.000 %

Nop instr : 0.000 %

Arith instr : 59.756 %

Ld/St instr : 30.175 %

branch instr: 9.937 %

misc instr : 0.132 %

#-----------------------------------

A few things to note: software compiler-generated NOPs do count towards the instruction count
but machine-inserted “bubbles”5 do not. Also, the denominator used for calculating the percentages
is “cycles.”

Note how the mix of different types of instructions vary between benchmarks. Record the mix
you observed for each benchmark (remember: don’t provide raw dumps – one good way to visualize
this kind of data would be a bar graph). Which benchmark has the highest arithmetic intensity?
Which benchmark seems most likely to be memory bound? Which benchmark seems most likely
to be dependent on branch predictor performance? 6

4.5 CPI analysis problem

Consider the results gathered from the RV32 1-stage processor. Suppose you were to design a new
machine such that the average CPI of loads and stores is 2 cycles, integer arithmetic instructions
take 1 cycle, and other instructions take 1.5 cycles on average. What is the overall CPI of the
machine for each benchmark?

What is the relative performance for each benchmark if loads/stores are sped up to have an
average CPI of 1 cycle? Is this still a worthwhile modification if it means that the cycle time is
increased 30%? Is it worthwhile for all benchmarks, or only some? Explain.

4.6 CPI Analysis Using the 5-Stage Processor

For this section we will analyze the effects of branching and bypassing in a 5-stage processor.7

The 5-stage processor provided in this lab has been parameterized to support both full-bypassing
(but must still stall for load-use hazards) and fully-interlocked. The fully-interlocked variant pro-
vides no bypassing, and instead must stall (interlock) the instruction fetch and decode stages
until all hazards have been resolved.

First, we must set the pipeline to “Full Bypassing”. Navigate to the Chisel source code:

5A “bubble” is inserted, for example, when the 2-stage processor takes a branch and must kill the Instruction
Fetch stage.

6If you would like to see the disassembly of any benchmark, you can visit ${LABROOT}/install/riscv-bmarks/,
and view the *.riscv.dump files. You can also use riscv64-unknown-elf-objdump to create your own disassembly files.

7The 2-stage processor will not be explicitly used in this lab, but it is provided to show how pipelining in a very
simple processor is implemented. Likewise, the micro-coded processor is also not explicitly used in this lab.

7

inst$ cd ${LAB1ROOT}/src/rv32_5stage

inst$ vim consts.scala (feel free to use any editor you like)

The file consts.scala provides all constants and machine parameters for the processor. Change
the parameter on line 21 to "val USE_FULL_BYPASSING=true;". You can see how this parameter
changes the pipeline by looking at the data path in dpath.scala (lines 209-241) and the control path
in cpath.scala (lines 220-239). The data path holds the bypass muxes used when full bypassing
is activated. The control path holds the stall logic, which must account for more situations when
no bypassing is supported.

After turning “full bypassing” on, compile and run the processor as follows:

inst$ cd ${LAB1ROOT}/emulator/rv32_5stage/

inst$ make run

inst$ vim output/vvadd.riscv.out

Record the CPI value for all benchmarks. Is it what you expected?
Now turn “full bypassing” off in consts.scala, and re-run the results (make sure it recompiled

your Chisel code).
Record the new CPI values for all benchmarks. How does full bypassing versus full interlocking

perform? If adding full bypassing hurt the cycle time of the processor by 25%, would it be worth
it? Argue your case. Be quantitative.

4.7 Design Problem

Imagine that you are being asked by your employer to evaluate a potential modification to the design
of a 5-stage RISC-V pipeline. The proposed modification is that the Execute/Address Calculation
stage and the Memory Access stage be merged into a single pipeline stage. In this combined stage,
the ALU and Memory will operate in parallel. Data access instructions will use memory while
leaving the ALU idle, and arithmetic instructions will use the ALU while leaving memory idle.
These changes are beneficial in terms of area and power efficiency. Think to yourself why this is
the case, and if you are still unsure, ask about it in Section or OH.

In RISC-V, the effective address of a load or store is calculated by summing the contents of one
register (rs1) with an immediate value (imm).

The problem with the new design is that there is is now no way to perform any address cal-
culation in the middle of a load or store instruction, since loads and stores do not get to access
the ALU. Proponents of the new design advocate changing the ISA to allow only one addressing
mode: register direct addressing. Only one source register is used, and the value it contains is the
memory address to be accessed. No offset can be specified.

In RISC-V, the only way to perform register direct addressing register-immediate address cal-
culation with imm = 0.

With the proposed design, any load or store instruction which uses register-immediate address-
ing with imm 6= 0 will take two instructions. First, the register and immediate values must be
summed with an add instruction, and then this calculated address can be loaded from or stored to
in the next instruction. Load and store instructions which currently use an offset of zero will not
require extra instructions on the new design.

8

Your job is to determine the percentage increase in the total number of instructions that would
have to be executed under the new design. This will require a more detailed analysis of the different
types of loads and stores executed by our benchmark codes.

In order to track more specific statistics about the instructions being executed, you will need to
modify the “Tracer” class found in the python script tracer.py (located in the
${LAB1ROOT}/emulator/common/ directory).

Modify “Tracer” to detect the percentage of instructions that are loads and stores with non–zero
offsets. Follow the steps laid out in the tracer.py file to accomplish this task. There is existing
code provided in “Tracer” which you can follow to implement your modifications.

Use the provided RISC-V ISA specification (found in “Resources” on the CS 152 webpage) to
determine which bits of the instruction correspond to which fields.

After modifying tracer.py, you can re-run your data with “make run” in the
${LAB1ROOT}/emulator/rv32_5stage/ directory.

What percentages of the instruction mix do the various types of load and store instructions make
up? Evaluate the new design in terms of the percentage increase in the number of instructions that
will have to be executed. Which design would you advise your employer to adopt? (Justify your
position. Be quantitative.)

5 Open-ended Portion (70% of lab grade)

Pick one of the following questions per team. The open-ended portion is worth a large fraction of
the grade of the lab, and the grade depends on how complex and interesting a project you complete,
so spend the appropriate amount of time and energy on it. Also, have fun with it!

5.1 Mix Manufacturing

The goal of this section is to investigate how effectively (or ineffectively) the compiler will handle
complicated C code created by you.

Using no more than 15 lines of C code (and no inline assembly or comma operators), attempt
to produce RISC-V assembly code with the maximum ratio of branch to non-branch instructions
when run on the 5-stage processor (fully bypassed). In other words, try to produce as many branch
instructions as possible. Your C code can contain as many poor coding practices as you like, but
limit yourself to one statement per line and do not cheat by calling functions or executing any code
not contained within the 15 line block. Your code must terminate. You can use code that creates
jumps, but jump instructions do not count; only conditional branches count.

Finally, run your code on the 5-stage processor (fully bypassed). What is the resulting CPI?
As you added more branches, did the CPI get higher or lower? Explain why the CPI went in the
direction it did.

Write your code into the file ${LAB1ROOT}/test/custom-bmarks/mix.c. Modify it to add your
custom code. In your write-up, summarize some of the ideas you tried.8

To test for correctness you can just compile and run it as follows:

inst$ cd ${LAB1ROOT}/test/custom-bmarks/

8Note: the provided processors only support load word and store word; therefore, you should avoid char variables
which synthesize load byte unsigned and store byte instructions.

9

inst$ make; make run-riscv

This invokes the RISC–V ISA simulator, which quickly tests the correctness of the code. You
may also view the disassembly by opening the file mix.riscv.dump.

However, to get a cycle-accurate trace of the code to determine the effect your program has on
CPI, you will have to run the code on the RV32 5-stage processor:

inst$ cd ${LAB1ROOT}/test/custom-bmarks/

inst$ make

inst$ cd ${LAB1ROOT}/emulator/rv32_5stage

inst$ export local_bmarks=mix

inst$ make run

Report the ratio of branches to non–branches that you achieved in your code. You will submit
this mix report, the achieved CPI of the 5-stage processor, your lines of C code, and the disassembly
of your C code.

5.2 Bypass-path Analysis

As an engineer working for a new start-up processor design company, you find yourself 3% over
budget area-wise on your company’s latest 5-stage processor (your company makes very small
processors, and every bit of area counts!). However, if you remove one bypass path you can make
the budget and ship on time!

Using the Chisel source code found in ${LAB1ROOT}/src/rv32_5stage/, analyze the impact
on CPI when different bypass paths are removed from the design. The files dpath.scala and
cpath.scala hold the relevant code for modifying the bypass paths and stall logic. Make sure that
your modified pipeline passes all of the assembly tests!

Show your data to support the bypass path you feel can be removed with the least impact on
CPI. Also, include in an appendix snippets of your modified Chisel code.

Feel free to email your TA or attend his office hours if you need help understanding Chisel,
the processor, or anything else regarding this problem.

5.3 Define and Implement Your Favorite Complex Instruction

In the problem set, we have asked you to implement two complex instructions (ADDm and
STRLEN) in the micro-coded processor. Imagine you are adding a new instruction to the RISC-V
ISA. Propose a new complex instruction (other than MOVN/MOVZ) that needs an EZ/NZ uBr in
its implementation, and has at least one memory operand. Write an assembly test for the proposed
instruction. Implement the instruction in the micro-coded processor, and test your new instruction.

To define an instruction, you first need to come up with an encoding. Consult the RISC-V
ISA document to first come up with an instruction format (see section 2.2 of the RISC-V base ISA
specification), and then spot an opcode space that is empty (look at Table 19.1 of the RISC-V base
ISA specification). Note that the custom-0/1/2/3 and reserved spaces are currently available. You
will have to add your instruction definition to ${LAB1ROOT}/src/common/instructions.scala

(please search for FIXME in the file). Let’s take a look at the definition for MOVN:

10

def MOVN = BitPat("b?????????????????????????1110111")

Note that the ? character is used for bit locations that can change (e.g., register specifiers). Bit
locations that are fixed have the actual bits written down. _ characters are ignored. The name of
the variable is used as a label for the dispatcher in the microcode.

Once you come up with an instruction encoding, you’ll have to write an assembly test to test
your instruction. To help you out, we wrote an assembly test for the MOVN instruction. Please
take a look at ${LAB1ROOT}/test/custom-tests/movn.S. Since the assembler doesn’t know about
the instruction, we manually write down the instruction with a .word assembly construct. We also
write some assembly code to load values to registers and memory. Finally, the code checks whether
it computes the right value. We have provided you with an empty assembly file that you can use
at ${LAB1ROOT}/test/custom-tests/yourinst.S (please search for FIXME in the file). Compile
your assembly test:

inst$ cd ${LAB1ROOT}/test/custom-tests/

inst$ make rv32ui-p-yourinst

Next, work out the implementation in a worksheet you have used in the problem set (worksheet
2.A or 2.B). Once you have figured out all the states and control signals, start adding your microcode
to ${LAB1ROOT}/src/rv32_ucode/microcode.scala (please search for FIXME in the file). You
will be able to see the microcode instructions for all RISC-V instructions implemented in the micro-
coded machine. Again, to provide you an example, we have implemented the MOVN instruction
in microcode.scala. Once you are done, build the processor and run the assembly test:

inst$ cd ${LAB1ROOT}/emulator/rv32_ucode

inst$ export local_asm_tests=rv32ui-p-yourinst

inst$ make run

Look at the log output at ${LAB1ROOT}/emulator/rv32_ucode/output/rv32ui-p-yourinst.out
to observe the machine state. See if the micro-coded processor has executed your instruction cor-
rectly. Change your implementation if necessary.

Feel free to email your TA or attend his office hours if you need help understanding Chisel,
the processor, or anything else regarding this problem.

5.4 Processor Design

Propose a processor modification of your own to a 3 or 5-stage pipeline. Justify your design
modification’s overhead, cost, or motivation by explaining which instructions are affected by the
changes you propose and in what way. You may have to draw a diagram explaining your proposed
changes for clarity, and you will very likely have to modify the “Trace” object to track specific types
of instructions not previously traced. A further tactic might be to show that while some instructions
are impacted negatively, these instructions are not a significant portion of certain benchmarks. Feel
free to be creative. Try to quantitatively make your case, but you do not need to implement your
proposed processor design.

11

5.5 Your Own Idea

We are also open to your own ideas. Particularly enterprising individuals can even modify the
provided Chisel processors as part of a study of your own design. However, you must first consult
with the Professor and/or TA to ensure your idea is of sufficient merit and of manageable complexity.

6 The Third Portion: Feedback

In order to improve the labs for the next offering of this course we would like your feedback. Please
submit your feedback via an online form (the domain will be provided separately).

How many hours did the directed portion take you? How many hours did you spend on the
open-ended portion? Was this lab boring? What did you learn? Is there anything you would
change? Feel free to write as little or as much as you want (a point will be taken off only if left
completely empty).

6.1 Team Feedback

In addition to feedback on the lab, we would like you to answer a few questions about your team:

1. In one short paragraph, describe your contributions to the project.

2. Describe the contribution of each of your team mates.

3. Do you think that every member of the team contributed fairly? If no, why?

7 Acknowledgments

Many people have contributed to versions of this lab over the years. This lab is based off of the
work by Yunsup Lee and was originally developed for CS152 at UC Berkeley by Christopher Celio,
and heavily inspired by the previous set of CS 152 labs (which targeted the Simics emulators)
written by Henry Cook. This lab was made possible through the work of Jonathan Bachrach, who
lead the development of Chisel, and through the work of Andrew Waterman, Yunsup Lee, David
Patterson, and Krste Asanović who developed the RISC-V ISA.

12

8 Appendix: Processor Diagrams

Figure 2: The Bus-Based RISC-V Implementation.

13

+4 In
st

ru
ct

io
n

M
em

Re
g

Fi
le

IT
yp

e
Si

gn
Ex

te
nd

De
co

de
r

Da
ta

 M
em

ir[
24

:2
0]

br
an

ch

pc
+4

pc_sel

ir[
31

:2
0]

rs
1

AL
U

Co
nt

ro
l

Si
gn

al
s

wb_sel

Re
g

Fi
le

rf_wen

val

mem_rw

PC

mem_val

ad
dr

wd
at

a

rd
at

a

In
st

Ju
m

p
Ta

rg
G

en

Br
an

ch
Ta

rg
G

en

ir[
19

:1
5]

ir[
31

:2
5]

,
ir[

11
:7

]

PC
+4

ja
lr

rs
2

Br
an

ch
Co

nd
G

en

br
_e

q?
br

_l
t?

co-processor (CSR) registers

ir[11:7]

ju
m

p

ir[
31

:1
2]

Ex
ec

ut
e

St
ag

e

br
_l

tu
?

PC

addr

ir[
31

:1
2]

Ju
m

pR
eg

Ta
rg

G
en

O
p2

Se
l

O
p1

Se
l

Al
uF

un

data

w
a

wd

en

addr

data
UT

yp
e

N
ot
e:

 fo
r s

im
pl

ici
ty,

 th
e

CS
R

Fi
le

(c

on
tro

l a
nd

 s
ta

tu
s

re
gi

st
er

s)
 a

nd

as
so

cia
te

d
da

ta
pa

th
 is

 n
ot

 s
ho

wn

RI
SC

-V

So
do
r 1

-S
ta

ge

ex
ce

pt
io

n

ST
yp

e
Si

gn
Ex

te
nd

ir[
31

:2
0]

PC

rs
2

rs
1

rs
2

Figure 3: The RV32 1-Stage Processor.

14

+4 In
st

ru
ct

io
n

M
em

Re
g

Fi
le

IT
yp

e
Si

gn

Ex
te

nd

ir[
24

:2
0]

br
 o

r j
m

p
pc

+4

pc_sel

ir[
21

:1
0]

De
co

de
r

val

PC

to
ho

st
ht

if_
to

ho
st

cp
r_

en

Da
ta

 M
em

mem_rw
mem_val

ad
dr

wd
at

a
rd

at
a

bu
bb

le

if_kill

IR

ir[
31

:2
5]

,
ir[

11
:7

]

ja
lr

rf_
rs

2

ir[
31

:1
2]

De
co

de
 S

ta
ge

Br
an

ch
Co

nd
G

en

br
_e

q?
br

_l
t?

br
_l

tu
?

PC

addr ST
yp

e
Si

gn

Ex
te

nd

ir[
31

:1
2]

O
p2

Se
l

AL
U

Al
uF

un

data
Re

g
Fi

le

rf_wen

w
a

wd

en

addr

data

PC RS
2

O
P2

O
P1

AL
U

O
UT

W
BD

at
a

RS
2

RS
1

rf_
rs

1

Ex
ec

ut
e

St
ag

e
M

em
or

y
St

ag
e

W
rit

eb
ac

k
St

ag
e

Fe
tc

h
St

ag
e

pc
+4

Ct
rl

ir[
19

:1
5]

Co
nt

ro
l

Si
gn

al
s

bu
bb

le

dec_kill
}

+

Br
an

ch
 &

 J
um

p
Ta

rg
G

en

<<
 1

UJ
Ty

pe

Si
gn

 E
xt

en
d

UT
yp

e
Si

gn

Ex
te

nd

<<
 1

2

ad
de

r

wb_sel

wb_sel

co-processor registers

+4

bypasses

by
 C

hr
ist

op
he

r C
el

io

RV
32

I 5
-s

ta
ge

R
IS

C
-V

 v
2.

0
Pr

iv
ile

ge
d

IS
A

v1
.7

co-processor registers

ir[11:7]

Figure 4: The RV32 5-Stage Processor.

15

