
CS152 Laboratory Exercise 2 (Version 1.2)

Professor: Krste Asanović
TAs: David Biancolin and Albert Magyar

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

February 22, 2019

Changelog

Version 1.2:

• Updated TLB miss penalty in Table 3

• Explains how to request custom AGFIs for Section 4.1.

• Minor grammatical fixes.

Version 1.1:

• Updated “Graded Items” (Section 1.1) to indicate you can share simulation results in the
directed section. You must still do the analysis separately.

• Added a brief overview of process all.py, in Section 3.4.3, to automatically generate result
summaries from hpm counter memory stats.csv files.

• Added target-scripts to run all of spec and all of gapbs in workloads/cs152-overlay.

1 Introduction and goals

The goal of this laboratory assignment is to study processor memory hierarchy design by running
realistic workloads on realistic RISC-V implementations. To do so, you’ll be running a subset
of the intspeed suite of SPEC2017, the latest revision of the industry standard benchmark suite
for evaluating high-performance, general-purpose microprocessor implementations, and the Graph
Algorithm Performance benchmark suite[1], a suite of portable, high-performance implementations
of 6 important graph kernels. Instead of running these applications on a software microarchitecture
simulator, you’ll be using FireSim[2], which deploys FPGA-accelerated simulators on Amazon EC2
F1 instances. These simulators use detailed microprocessor models that have been transformed
from silicon-ready RTL, generated by Rocket Chip SoC generator [3]. In addition, FireSim provides
runtime-reconfigurable memory system timing models using another generator, FASED[4], which
you’ll use to simulate last-level caches and DRAM memory systems.

1

1.1 Graded Items

You will turn in a hard copy of your results to the instructor or TA, or a digital copy over bCourses.
Please label each section of the results clearly. As before, each student will turn in a complete set
of solutions for all of the closed ended problems. Since some of the experiments take a considerable
amount of time to run, you may share simulation results with the members of your open-ended
team, or with up to two other students, but you must do the analysis independently. In report,
please indicate who ran the experiments associated with the results used for particular question.

As before, the open-ended section may be done in groups of one, two, or three; each group
should submit a single report on one of the open-ended problems.

1. (Directed) Section 3.6: L1 Cache & TLB Parameter Sweep under SPEC CPU2017

2. (Directed) Section 3.7: Performance Modeling with Microarchitectural Events

3. (Directed) Section 3.8: Outer Memory System Study with GAP

4. (Open-ended) Section 4.1: Designing a Memory Hierarchy with a 5mm2 Area Budget

5. (Open-ended) Section 4.2: Reverse Engineering of Memory Hierarchies

6. (Directed) Section 5: Feedback

Lab reports must be in readable English and not raw dumps of log-files. It is highly recommended
that your lab report be typed. Charts, tables, and figures - when appropriate - are great ways to
succinctly summarize your data.

2 Background

Since it’s often confusing which machine we’re talking about when speaking of computers simulating
computers, throughout the lab we make a distinction between the target, the simulated machine,
and the host the machine executing the simulation.

This section is lengthy as you’ll be introduced to a number of new tools, target designs, target
software, and benchmarks. Feel free to skip to the first section of the directed portion of the
lab, which will walk you launching a FireSim simulator, running an application the target, and
post-processing the data on the host.

2.1 Rocket Chip

Rocket Chip [3] is an open-source SoC generator suitable for both research and industrial purposes.
Like the Sodor generators in Lab 1, Rocket Chip is a Chisel generator: a Scala program that,
when executed, constructs a design based on some input parameterization to produce a single
design instance. This is compiled down and emitted as Verilog. As such, Rocket Chip can generate
a practically infinite space of instances, including many parameter sets that are impractical or
suboptimal. In this lab, we will examine a few dozen points from this space, each with a different
memory hierarchy, to explore the concepts described in class. All of the Rocket Chip instances
you will use in this lab have three major components: processors, a cache hierarchy, and an outer
memory system.

Rocket Chip derives its name from the processor microarchitecture it instantiates by default:
Rocket, a 5-stage, in-order RISC-V processor (Figure 1). The instances you’ll be using all implement

2

Figure 1: The Rocket Pipeline.

RV64IMAFDC, which refers to the 64-bit version of the RISC-V base ISA (RV64I), along with a
set of useful extensions: M for integer multiply, A for atomic memory operations, F and D for
single- and double-precision floating point, and C for 16-bit compressed representations of common
instructions. Rocket Chip can generate multi-core instances, but in this lab you’ll be using only
uniprocessor instances.

A single-core Rocket Chip instance’s cache hierarchy includes an L1 instruction cache, an L1
data cache, fully associative L1 I&D TLBs, and an optional, unified, direct-mapped L2 TLB. Each
of these structures has a parameterizable size, associativity1, and replacement policy, which is
selected when Rocket Chip is generating the instance.

To talk to an outer memory system (generally DRAM), instances present an AXI4 master port.
Since you will not be working with actual physical implementations of DRAM chips and controllers,
a configurable, hardware memory model will be attached to this port, simulating the behaviors of
a connected DRAM system and optionally a last-level cache (LLC).

2.2 FPGA-accelerated Simulation with FireSim

A Rocket Chip instance describes the large majority of the design of a complete SoC, one you
could ”tapeout” in silicon. Ideally, we’d use a software RTL simulator to do our microarchitecture
performance studies, but these can only simulate a few thousand target machine cycles in each
second of real wall clock time. Given that this makes the simulation take as long as if you ran
the benchmark on a ˜1kHz computer, this is far too slow for long-running applications or booting
an operating systems. In fact, this is about a million times slower than a silicon implementation
of the real ˜1GHz SoC represented by that instance! Instead, we’ll use an FPGA to simulate the
instance by synthesizing the Verilog directly into the FPGA’s LUT registers. Once you’ve paid the
multi-hour FPGA compile time cost, these simulators can run at >100MHz – fast enough to boot
Linux in seconds, and responsive enough to type into a simulated console in real time.

In this lab, we’ve done the painstaking work of precompiling all of your simulator FPGA con-
figurations, or bitstreams, so you’ll be able to switch between different instance simulators rapidly.

FireSim provides all the tools to build software for the simulated machine, generate Rocket Chip
instances, compile simulator bitstreams, and batch out experiments to dozens of EC2 F1 instances.
In this lab you’ll be using a subset of the features to run a single simulation at a time, on a single
EC2 F1 host.

1excluding the L2 TLB

3

2.3 FASED: Modeling Memory Systems In FireSim

Using FPGAs to do microprocessor simulation introduces a number of challenges. Given that the
SoC would likely connect to DRAM through an off-chip interface, and given that the RTL of the
design expresses only the actual SoC itself, there can be significant challenges in modeling the outer
memory system accurately and deterministically. A real Rocket Chip-based SoC would instantiate
a DRAM memory controller and drive real DRAM devices; given that these extra chips can’t just
be synthesized into FPGA fabric, we need to somehow reuse the DRAM subsystem attached to the
FPGA, while simulating the DRAM subsystem we’d like to tape out. FireSim’s memory timing
model generator, FASED, does this by issuing memory requests to the FPGA’s DRAM and applying
latencies to the responses using a synthesizable hardware timing model. A FASED instance delays
host memory responses that are too fast, and ”pauses” the simulation if responses don’t come back
in time. In this way, a FASED instance can deterministically and faithfully model a DDR3 memory
system using the FPGA’s DDR4 memory system, or even simulate a single-cycle ”magic” memory
system, which is useful for doing asymptotic studies on memory system performance.

Since FASED instances are dedicated timing models not meant for silicon tapeouts, we’ve spent
extra hardware to make them runtime reconfigurable. The timing parameters associated with a
particular memory system configuration are loaded when you launch the simulator – this will allow
you to change the simulated memory system without needing to recompile the FPGA’s bitstream.

2.4 Target System Software

For this lab, you’ll be running applications on a stripped-down Linux distribution; in particular,
it uses a system configured by buildroot, an open-source tool that generates lightweight, embedded
Linux environments. We’ll provide a root filesystem image that includes everything needed to
run the benchmarks for the the directed portion, as well as profiling tools you can reuse in the
open-ended section.

2.5 The SPEC CPU2017 Benchmark Suite

The SPEC CPU2017 benchmark package (https://www.spec.org/cpu2017/) is the industry stan-
dard benchmark for evaluating general-purpose microprocessors. SPEC CPU2017 consists of four
suites, but for this lab we will be studying a subset of the intspeed suite, which measures execution
latency on integer code. You’ll be running three benchmarks from the suite, with smaller test in-
puts 2 Brief descriptions of them, taken from https://www.spec.org/cpu2017/Docs/benchmarks/,
follow. We given their approximate dynamic instruction counts in Table 1.

• 605.mcf s is a benchmark which is derived from MCF, a program used for single-depot vehicle
scheduling in public mass transportation. The program is written in C. The benchmark
version uses almost exclusively integer arithmetic.

• 620.omnetpp s performs discrete event simulation of a large 10 gigabit Ethernet network. The
simulation is based on the OMNeT++ discrete event simulation system ([1]www.omnetpp.org),
a generic and open simulation framework.

2The reference inputs take a day to run on a typical rocket-based target in FireSim — per benchmark — so we
batch out the suite to 11 FPGAs in parallel.

4

Benchmarks Insns (Billions)

605.mcf 26
620.omnetpp 11
631.deepsjeng 50

Table 1: Dynamic instruction counts of Lab 2’s SPEC201 intspeed sub-suite running its test inputs.

Benchmarks Insns (Billions)

BFS 6.1
SSSP 38
CC 3.2

Table 2: Dynamic instruction counts of Lab 2’s GAP sub-suite running with 220 vertex Kronecker
inputs.

• 631.deepsjeng s is based on Deep Sjeng WC2008, the 2008 World Computer Speed-Chess
Champion. Deep Sjeng is a rewrite of the older Sjeng-Free program, focused on obtaining the
highest possible playing strength.

2.6 Graph Algorithm Performance Benchmark Suite

The Graph Algorithm Performance Benchmark(GAPBS) Suite[1], developed by Scott Beamer,
consists of a portable, high-performance implementations for 6 fundamental graph algoritms. As
above, in this lab we’ll be using smaller inputs (Kronecker graphs with 220 vertices) as the reference
inputs, real graphs of things like social networks, take too long to run. We provide three of the six:

• Breadth-First Search (BFS) - direction optimizing

• Single-Source Shortest Paths (SSSP) - delta stepping

• Connected Components (CC) - Afforest & Shiloach-Vishkin

Approximate dynamic instruction counts for each benchmark are given in Table 2.

3 Directed Portion (30%)

3.1 Connecting to your EC2 F1 Host

You’ll be running on an EC2 F1 instance for the bulk of this lab. On the instructional machines,
we provide scripts to manage your instance. SSH onto an instructional machine (
icluster{6-9}.eecs.berkeley.edu). You’ll need to install python’s boto3 package and source
lab2’s bashrc, like so:

inst$ pip install --user boto3

Feel free to add this to your ~/.bash_profile

inst$ source ~cs152/sp19/cs152.lab2.bashrc

5

This will put four commands on your path:

• f1-launch spins up a fresh instance.

• f1-stop ”pauses” your instance, all persistent state on EBS volumes (drives) is maintained,
but you don’t have to pay for th instance.

• f1-start restarts your previous stopped instance.

• f1-terminate blows away your instance and all of your state on attached drives.

You should only have to call f1-launch once at the start of the lab, after which you can just
stop and start your instance at your leisure. If things get dire and you need a fresh machine (or if
we need to deploy a fresh image), only then will you need to terminate and relaunch the instance.

Let’s launch our F1 instance:

inst$ f1-launch

Launching an instance.

Waiting for instance initialization. This will take about a minute.

Instance ready.

Instance ID: i-0f83b0bae99b6f43a

Instance State: running

Instance IP: 52.38.89.130

It will take a couple minutes to launch an instance, so you’ll need to be a little patient the first
time. Note: your instances’s IP will change every time you start and stop the instance, but the
provided scripts will always give you the the up-to-date IP address.

To SSH into your instance use the user centos, and the private key ~cs152/sp19/lab2/firesim.pem.
In lab2’s bashrc, we’ve aliased ssh and scp to include this key.

inst$ ssh centos@<YOUR-INSTANCE-IP>

3.2 A Tour of FireSim’s Configuration Files

Now you are on your F1 instance, move into the root of the firesim repository at /firesim, and
set up your environment:

inst$ ssh centos@<YOUR-INSTANCE-IP>

centos$ cd ~/firesim

centos$ export FIRESIM_ROOT=$(pwd)

centos$ source sourceme-f1-manager.sh

We’ll refer to the root of firesim as $FIRESIM ROOT from now on. sourceme-f1-manager.sh will
put a RISC-V toolchain and firesim’s eponymous manager program, firesim. cd into deploy/.
Here you’ll find the base configuration files used by firesim. You’ll be working in this directory
and $FIRESIM ROOT/deploy/workloads for much of the lab. Open config runtime.ini.

6

centos$ cd deploy

centos$ ls

centos$ $EDITOR config_runtime.ini

This ini describes a simulation.

RUNTIME configuration for the FireSim Simulation Manager

See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst

[runfarm]

runfarmtag=mainrunfarm

f1_16xlarges=0

m4_16xlarges=0

f1_4xlarges=0

f1_2xlarges=1

runinstancemarket=ondemand

spotinterruptionbehavior=terminate

spotmaxprice=ondemand

[targetconfig]

topology=no_net_config

no_net_num_nodes=1

linklatency=6405

switchinglatency=10

netbandwidth=200

This specifies the instrumentation sampling rate (in target-clock cycles)

on the FASED timing model. -1 = Disabled.

profileinterval=-1

This selects a bitstream and runtime configuration file pair

defaulthwconfig=CS152BaseTConfig-LBPBaseConfig

[tracing]

enable=no

startcycle=0

endcycle=-1

[workload]

This will let you spin up different root filesystems on your target

workloadname=linux-uniform.json

terminateoncompletion=no

Now open up config hwdb.ini. Here you’ll find a database of all the different target designs
we’ve preconfigured for you. (The first entry is the name of the configuration, you’ll use this string
to specify your hwconfig in config runtime.ini. Hardware database entries looks as follows:

7

Rocket-Chip FASED Memory Model

Generator Config. Generator Config.

"TARGET_CONFIG" "PLATFORM_CONFIG"

| |

V V

[CS152BaseTConfig-LLCDRAMBaseConfig] # Name

agfi=agfi-0611c5eed29acfda8 # Bitstream

deploytripletoverride=None # Ignore this

customruntimeconfig=None

[single-cycle]

agfi=agfi-01f762aab939519ce

deploytripletoverride=None

Overrides default latency of latency-bandwidth pipe

Custom runtime configurations must be in $FIRESIM_ROOT/sim/custom-runtime-configs

customruntimeconfig=LBPBaseConfig/single-cycle.conf

The name of a HWDB entry has two parts: a TARGET CONFIG, which selects the SoC in-
stance Rocket-Chip generates, and a PLATFORM CONFIG, which selects memory-timing model in-
stance FASED generates. For a given memory model instance, a space of different runtime con-
figurations can be used. They are written to memory mapped registers in the simulator before
simulation commences. To prevent you from mismatching a runtime-configuration with an in-
compatible instance we’ve put them in sub-directories according to their PLATFORM CONFIG. cd to
$FIRESIM ROOT/sim/custom-runtime-configs and check out some of the provided examples:

centos$ cd $FIRESIM_ROOT/sim/custom-runtime-configs/LLCDRAMBaseConfig

centos$ $EDITOR 8W-64B-256K-LLC-FCFS-16G-4R-2133-OP.conf

+mm_relaxFunctionalModel=0

+mm_openPagePolicy=1

+mm_backendLatency=2

+mm_schedulerWindowSize=8

+mm_transactionQueueDepth=8

DDR3 Memory Timings

+mm_dramTimings_tAL=0

+mm_dramTimings_tCAS=14

+mm_dramTimings_tCMD=1

...

+mm_dramTimings_tWTR=8

DRAM organization & address assignment scheme

+mm_rankAddr_offset=16

+mm_rankAddr_mask=3

...

+mm_bankAddr_offset=13

+mm_bankAddr_mask=7

Last-level cache size and organization

8

+mm_llc_wayBits=3

+mm_llc_setBits=9

+mm_llc_blockBits=6

The default hwdb in config runtime.ini will simulate a single Rocket core, with 16KiB, 4-
way, L1 I and D caches, with fully-associative L1 I/DTLBs with 32 entries, and a direct-mapped
L2 TLB with 256 entries. The memory model can simulate a LLC with up to 4MiB in capacity
(when configured with 8 ways and 128B lines), and is backed by a 16 GiB, quadruple-rank, DDR3
14-14-14 memory system.

3.3 Linux Boot and Hello World

To boot the default target we need to run two commands. If you haven’t already, you should start
a tmux or screen session.

centos$ firesim infrasetup # Programs FPGA, creates run dir @ ~/sim_slot_0

centos$ firesim runworkload &> /dev/null & # Launches the simulation

Always call infrasetup before launching a simulator, as important simulator state is
initialized during flashing. To attach to the simulator, use screen to attach to a screen instance
named *.fsim0.

centos$ screen -R

There are several suitable screens on:

6587.fsim0 (Detached) # You want this one

6308.virtual_jtag (Detached)

6126.hw_server (Detached)

Type "screen [-d] -r [pid.]tty.host" to resume one of them.

centos$ screen -r 6587.fsim0

[0.020000] disk [generic-blkdev] of loaded; 3800800 sectors

[0.020000] VFS: Mounted root (ext2 filesystem) on device 253:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 148K

[0.020000] This architecture does not have kernel memory protection.

mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can’t change directory to ’/lib/modules’: No such file or directory

Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can’t find device ’eth0’

FAIL

Starting dropbear sshd: OK

If you’ve done this quick enough, you’ll catch the target in the middle of Linux boot. You’ll be
presented with a prompt. Login with the username: root and password: firesim.

9

Welcome to Buildroot

buildroot login:

Congratulations! You’ve logged on a FireSim cycle-accurate simulation of a Rocket-Chip SoC.
It may be running a minimalist buildroot distribution, but you should be able to interact with the
target much like you would any other Linux box. For example:

rocket$ uname -a

Linux buildroot 4.15.0-rc6-31587-gcae6324ee357 #1 SMP ...

rocket$ cat /proc/cpuinfo

hart : 0

isa : rv64imafdc

mmu : sv39

uarch : sifive,rocket0

3.4 Instrumentation & Running a Workload

To collect core-side performance statistics from the simulator, we’re going to run a user program,
hpm counters, that periodically polls the core’s hardware performance monitor (HPM) counters
every 0.1 target-seconds3. It should already be on your path (installed at /usr/bin/hpm counters

in the target’s filesystem). To profile the execution of a program, you can invoke hpm counters as
a background process, run the desired program, and then terminate hpm counters. For example:

rocket$ hpm_counters > stats.out &

rocket$ echo "Hello World"

rocket$ pkill hpm_counters

rocket$ cat stats.out

Produces a result like this:

Cycles = 24642332997

Instructions Retired = 3419229816

Time = 7700729

Loads = 679399395

Stores = 298182970

I$ miss = 6194625

D$ miss = 238974014

D$ release = 26570146

ITLB miss = 788193

DTLB miss = 11754357

L2 TLB miss = 11513147

Branches = 337933419

Branches Misprediction = 13819477

Load-use Interlock = 2028478246

I$ Blocked = 308655575

Finally, we’ve provided two shell scripts on your path, start counters and stop counters,
which will dump the statistics file to the /hpm data.

3Our targets run at “1GHz”, so this corresponds to 100 million target-cycles

10

3.4.1 Running SPEC & GAPBS Benchmarks

We’ve put precompiled SPEC binaries at /spec17-intspeed, and provided a launch script, run.sh,
that will spin up a benchmark with the right inputs. Passing --counters, will use hpm counters
to profile execution. Try running omnetpp (it will take a couple minutes, so feel free to interrupt
it).

rocket$ cd /spec17-intspeed

rocket$./intspeed 620.omnetpp_s --counters

Standard out and error from the run can be found at /output. We can do the same with GAP,
which is installed at gapbs. To run bfs:

rocket$ cd /gapbs

rocket$./gapbs.sh bfs-kron --counters

3.4.2 Powering Down A Simulator & Pulling Out Results

When you’re done simulating, and ready to parse results, call poweroff. Warning: If you want
your results, don’t try to rush it with poweroff -f, as firesim will need to re-mount the target’s
filesystem after it powers down.

When a simulation terminates, FireSim collects all your desired outputs and puts them to
$FIRESIM ROOT/deploy/results-workload/<TIME>-<workload-name>. By default, after the tar-
get has terminated the Linux-uniform workload copies everything under /output and /hpm data

output of the target’s filesystem4. There you’ll also log of the UART (uartlog) and automatically
collected memory-system statistics(memory stats.csv). NOTE: the values in memory stats.csv
are 32 bit values, so they may roll over!

3.4.3 Adding Custom Files & Automation

To carry you through the open ended section, you’ll need to automate some of the drudgery of
spinning up and tearing down simulations, and running workloads. This might include adding your
own scripts and applications to the target’s filesystem.

For this we provide two skeleton workloads, cs152-automated.json and cs152-interactive.json

that will let you add arbitary files to the targets file system. The automated workload will also will
run your desired script as part of init, before powering off the machine.

cd to $FIRESIM ROOT/deploy/workloads/ and look at cs152-automated.json.

centos$ cd $FIRESIM_ROOT/deploy/workloads

centos$ $EDITOR cs152-automated.json

{

"common_bootbinary" : "bbl-vmlinux",

"benchmark_name" : "cs152-automated",

The root of where you want to put your custom files

"deliver_dir" : "/cs152/",

4You can always remount the filesystem yourself, you can find it at ~/sim slot 0

11

Files you want added to the target’s filesystem, before simulation

"common_files" : ["example-script.sh"],

"common_args" : [""],

Add files you want removed from the target’ filesystem here

"common_outputs" : ["/hpm_data", "/output", "/cs152/hello.out"],

"common_simulation_outputs" : ["uartlog", "memory_stats.csv"],

"workloads" : [

{

"name": "cs152-automated-all",

"files": [],

A shell command you want to run before poweroff

"command": "cd /cs152 && ./example-script.sh > hello.out",

"simulation_outputs": [],

"outputs": []

}

]

}

And then build it:

centos$ make cs152-automated

mkdir -p cs152-automated

cp ../../sw/firesim-software/images/br-disk-bin cs152-automated/bbl-vmlinux

python gen-benchmark-rootfs.py -w cs152-automated.json -r \

-b ../../sw/firesim-software/images/br-disk.img \

-s cs152-overlay

Generating a Rootfs image for cs152-automated-all

Copying base rootfs ../../sw/firesim-software/images/br-disk.img

to cs152-automated/cs152-automated-all.ext2

Copying src: cs152-overlay/example-script.sh to

//cs152//example-script.sh in target filesystem.

Creating init script with command:

cd /cs152 && ./example-script.sh > hello.out

Copying src: build/temp to /etc/init.d/S99run in target filesystem.

Now to run your new image on a simulator, update config runtime.ini (or create a new one),
and run the simulator as you did before:

centos$ vim $FIRESIM_ROOT/deploy/config_runtime.ini

[workload]

workloadname=linux-uniform.json # -> change to "cs152-automated.json"

centos$ firesim infrasetup

centos$ firesim runworkload &> /dev/null &

12

If you attach you screen, you’ll notice the target boots into init, runs the example script, and
powers off before you’re given the prompt. As before, you can find the results in an appropriately
named directory in $FIRESIM ROOT/deploy/results-workload.

In additional to the example script, we’ve also provided two additional target-scripts: run-spec.sh
and run-gapbs.sh, in $FIRESIM ROOT/deploy/workloads/cs152-overlay. These can be substi-
tuted for the example script to run all of the benchmarks of a suite on a single simulator.

Finally, we’ve provided a host-script, process all.py, which will run by default on automated
workloads, and will parse the memory-system and hpm-counter stats files and emit event summaries
summaries that will resid in that workload’s results-workload directory.

In the results-workload dir

centos$ cd cs152-automated-all/post_processed

centos$ ls

605.mcf_s0.csv

605.mcf_s0.summary

memory_stats_processed-605.mcf_s0.csv

memory_stats_processed-605.mcf_s0.summary

centos$ cat 605.mcf_s0.summary

Total Cycles : 133263388708

Total Instructions : 25671816938

CPI : 5.191

D$ MPKI : 89.549

I$ MPKI : 0.173

D$ Miss % : 22.999

ITLB MPKI : 0.004

DTLB MPKI : 32.716

L2 TLB MPKI : 18.202

Branch Prediction % : 85.317

centos$ cat memory_stats-605.mcf_s0.summary

Number of Reads Serviced : 2.30E+09

Number of Writes Serviced : 1.87E+08

AXI4 R Bus Utilization % : 110.659

AXI4 W Bus Utilization % : 9.002

LLC Summary:

LLC Hit Rate (%) : 40.589

LLC MPKC : 11.108

Miss : Writeback Ratio : 13.522

Row Buffer Hit % : 64.571

RANK 0 Summary :

Row Buffer Hit % : 65.423

Cycles Idle % : 21.814

RANK 1 Summary :

Row Buffer Hit % : 61.549

Cycles Idle % : 18.849

13

RANK 2 Summary :

Row Buffer Hit % : 65.163

Cycles Idle % : 21.656

RANK 3 Summary :

Row Buffer Hit % : 66.736

Cycles Idle % : 24.517

You can retroactively invoke process all.py on a results-workload directory like so:

centos$ cd $FIRESIM_ROOT/deploy/workloads/cs152-automated/

centos$./process_all.py -b <path-to-your-results-workloads-dir>

3.5 Stopping Your Instance & Credits

Once you’re done with your work on the EC2 f1 instance, logout and stop the instance.

centos$ exit

inst$ f1-stop

This will perserve the persistent state of your instance (any thing you wrote to a filesystem) so
you’ll be able to restart the instance and still have your environment setup and all of your results.
Amazon does not charge for a stopped instance (only for the data you’ve have on persistent storage
(EBS), which can be neglected).

For this lab, we have credit enough for 100 hours of f1.2xlarge up-time per student.
We’ll be tracking per-student expenditure, so once you spend above your limit your
instance will be suspended, and you won’t be able to start it again until the next lab.

With that out of the way, it’s time to get to the graded content of the lab.

3.6 L1 Cache & TLB Parameter Sweep for SPEC CPU2017

In this section, you will collect memory system and core-side statistics for the SPEC2017 intspeed
sub-suite. You’ll run all three benchmarks on a set of different memory systems that sweep one
independent parameter of: L1 cache size, L1 cache associativity, L1 TLB size, or lL2 TLB size.

First, assume the L1 cache access time is 1 cycle, the L2 cache access time is 25 cycles, 42 cycles
for a DRAM row buffer hit, and 70 cycles for a DRAM row-buffer miss, for calculation of AMATs.
Give an expression for calculating AMAT.

Now sweep across an appropriate space of rocket configurations, using the BaseLLCDRAMConfig

memory model instance and it’s default runtime-configuration. Use stats collected from the memory
timing model, and from hpm counters, to answer the following questions:

1. How does the L1 cache size affect system performance? Report miss rates, MPKIs, AMATs
(in cycles), and CPIs for the available L1 cache configurations by using a fixed associativity
of 8, and fixed TLB capacities.

2. How does the L1 cache associativity affect system performance? Report miss rates, MPKIs,
AMATs (in cycles), and CPIs for the provided L1 cache configurations assuming a fixed L1
I & D cache capacity of 8 KiB, and fixed L1 and L2 TLB capacities.

14

Microarchitectural events Miss penalty (cycles)

L1 cache miss 25 (L2 cache access latency)
L2 cache miss 2/3× 42 + 1/3× 70 (DRAM access latency)
L1 TLB miss 2
L2 TLB miss 3× (2/3× 1 + 1/3× 70)

Branch condition mispredict 3
Target address mispredict 3

Table 3: Idealized Miss Penalties for Microarchitectural Events

3. How does the L1 TLB size size affect system performance? Report miss rates, MPKIs, AMATs
(in cycles), and CPIs for the provided L1 TLB configurations, fixing the L2 TLB capacity.

4. How does L2 TLB size affect system performance? Report miss rates, MPKIs, AMATs (in
cycles), and CPIs for the provided L2 TLB configurations (fixed L1 D$, I$ and L1 TLB sizes).

3.7 Performance Modeling with Microarchitectural Events

We can approximate CPI with the following equation:

CPI = CPIbase +
∑

e∈{events}

MPIe × PENALTYe

where MPIe is misses per instruction for event e and PENALTYe is the miss penalty for event e.
Table 3 shows the miss penalties for microarchitectural events.

Note that Rocket Chip supports three-level page tables (Section 4.3 in [5]). Thus, when there
is an L2 TLB miss, the hardware page table walker (PTW) accesses a cache for page table entries
(PTEs) first (let’s assume its hit rate is 2/3) and the L2 cache and main memory if there is a miss
in the cache. The PTW repeats it three times to access a leaf table to obtain the physical page
number.

The Rocket core also predicts branch conditions as well as target addresses for control flow
instructions. When these predictions are wrong, PC is redirected from the memory stage, and thus
their penalties are 3 cycles in most cases.

Assuming CPIbase = 1.3 (why not 1?), predict CPIs for various cache parameters across bench-
marks using the data from Section 3.6 and compare them against the actual CPIs from the sim-
ulations. How close are the predicted CPIs to the actual CPIs? What assumptions do you think
contribute the most to the descrepancy? Explain, using collected results where possible.

3.8 Outer Memory System Study with GAPBS

In this question we’ll be sweeping LLC and DRAM parameters while keeping the TARGET CONFIG

fixed, to study how the outer memory system affects performance of the provided GAPBS sub-suite.
Start by collecting two baselines, one with a DRAM memory system but with no LLC, and one
using a single-cycle memory system.

1. How does the L2 cache size affect system performance? Report miss rates, MPKIs, AMATs
(in cycles), and CPIs for the available L2 runtime-configurations assuming a 64-byte block

15

size, and 8 way set associativity. Constrast the results against the cacheless DRAM model,
and the single-cycle outer memory system. How does DRAM row-buffer hit rate change as
the cache capacity changes? When, if ever, would you consider using a closed page policy?

2. Repeat the experiment above, now with 128B cache lines. Report miss rates, MPKIs, AMATs
(in cycles), and CPIs, and constrast the results to the 64B.

3. How does the L2 cache associativity affect system performance? Report miss rates, MPKIs,
AMATs (in cycles), and CPIs for L2 associativities of 2, 4, and 8 ways using a fixed cache
capacity of 512KiB, and 64B cache blocks. How does DRAM row-buffer hit rate change as
the cache associativity changes?

4 Open-ended Portion (70%)

Pick one of the following questions. The open-ended portion is worth a large fraction of the grade
of the lab, and the grade depends on how comprehensive the process to your conclusion is.

4.1 Designing a Custom Memory Hierarchy with a 5mm2 Area Budget

This question strikes at the heart of job of a computer architect. We want to figure out how we
can make the best of a 5mm2 cache area budget for caches for our target application (you’ll pick
either the GAP or SPEC sub-suites we provided). You’ll need to consider the effects of both cycle
time and CPI on performance using the Iron Law. Using FireSim, you’ll be able to measure CPI
and explore different cache organizations. To explore area and cycle time, you will use CACTI [6],
a tool that models physical cache implementations.

4.1.1 Calculating Cycle Time

For the purpose of calculating cycle time, we will assume the critical paths of both the core and
outer memory system go caches and/or TLBs (this is not atypical). Therefore, the access times
for the L1 caches and L1 TLB determine the cycle time of the core domain where they reside,
along with the CPU. For this problem, we’ll also assume that our L2 cache, L2 TLB, and DRAM
subsystems reside in a separate clock domain, with the constraint that this domain runs at exactly
half the frequency. We will use CACTI to estimate the access times and the areas for given cache
configurations.

You can use CACTI on your computer, but we recommend using the icluster machines. First,
clone the CACTI repository and compile CACTI:

inst$ git clone https://github.com/albert-magyar/cacti.git

inst$ cd cacti

inst$ make

In cs152-sp19-configs, there are L1Icache.cfg, L1Dcache.cfg, L2cache.cfg, L1TLB.cfg,
L2TLB.cfg, which are configuration files representing the L1 instruction cache, L1 data cache, L2
cache, L1 TLB, and L2 TLB, respectively.

16

Parameters Values

Associatively 1, 2, 4, 8
Number of Sets Up to 4096 (power of 2)

Block Size Up to 128 bytes (power of 2)

Table 4: Available LLC cache parameters

To evaluate the access time and area of a cache with the parameters specified by a given
configuration file, run the following command from the top-level cacti directory:

inst$ make run CFG=cs152-sp19-configs/<configuration file>

The result will be saved in cs152-sp19-outputs/. Note that results are appended to the out-
put file when you repeat it for the same configuration file.

Next, sweep the parameters in these files to represent the space of different cache configurations
under consideration. Each time you edit a file, re-run make run ... to obtain the new results.
You should start by picking configurations you can simulate on the provided AGFIs (Table 4 shows
the space of available configurations for the L2 cache). If you’d like to evaluate a design that hasn’t
been provided, you may add it to the Google sheet provided on Piazza (@141). You can only
request L1 cache configurations that avoid aliasing.

If you want to flush all output files, run:

inst$ make clean

4.1.2 Submission

Now that you can calculate cycle time, go ahead and explore the design space! Pick a design point
that you feel represents a good tradeoff of cycle time and CPI, and make sure you size your L2
cache and TLB to take advantage of their decreased clock speed – more cycle time means you can
fit a bigger cache while still closing timing!

Submit a report that explains how you arrived at your proposed design. You don’t have enough
time to do a brute force exploration of the design space, so explain what you tried, and what
you didn’t, and why. Leverage data you’ve collected where possible. For example, try plotting
CPI, cycle time, or execution time over a design parameter to motivate why you didn’t take that
parameter further. Finally, explain how particular workloads in the benchmark influenced your
design. If you could remove one, which would it be, and why?

Finally, please attach the configuration files from Section 4.1.1.

4.2 Validation and Reverse Engineering of Memory System Organizations

In this question, we’ll try to infer parameters of a computer’s memory system by running user code
and measuring execution latency. This is useful for a number reasons:

• To help guide application optimizations when the microarchitecture host system is unknown
or secret.

17

• To do performance validation of a memory system organization before tape out. Some of
the most insidious bugs in computer system design are performance bugs, since applications
still execute correctly only more slowly. We’d like to catch these bugs before committing a
design to silicon, but without a performance model of the machine-under-test they may go
undiscovered.

• Using the same principle as above, to help validate simulation models (read: FASED). FASED,
like many simulation models splits its timing and functional model. This scheme makes it
possible to build very large cache models with actually modeling data – but without the data
it’s very easy to write ”correct” but fundamentally broken timing models.5

4.2.1 Getting Started and Easy Questions

To validate our memory hierarchy, we will use the caches benchmark in ccbench [7] developed by
Christopher Celio6 In $FIRESIM ROOT/deploy/workloads we’ve defined an automated workload
that run ccbench for you, and visualize the result. The make recipe will also build CCbench from
source. To run CCbench, do as follows:

centos$ cd $FIRESIM_ROOT/deploy/workloads

centos$ make ccbench-cache-sweep

centos$ firesim infrasetup -c workloads/ccbench-cache-sweep.ini

centos$ firesim runworkload -c workloads/ccbench-cache-sweep.ini {&> /dev/null &}

This will take about four minutes. ccbench also provides a script to visualize the output file.
The provided CCbench workload will run this script on the uartlog after powerdown to generate a
plot of loop latency vs array size.

centos$ cd ../results-workload/<TIMESTAMP>-ccbench-cache-sweep/ && ls

ccbench-all outputplot.pdf # <- open pdf locally

centos$ $EDITOR ccbench-all/uartlog

...

App:[caches],NumThreads:[0],AppSize:[1024],Time:[4.01151],

App:[caches],NumThreads:[0],AppSize:[2048],Time:[4.01097],

App:[caches],NumThreads:[0],AppSize:[4096],Time:[4.02701],

Size of array (4B words) ^ ^ Cycles per iteration

...

Open up the plot and answer the following questions:

• What is the L1 cache size?

• What is the L1 cache latency?

• What is the L2 cache size?

• What is the L2 cache latency?
5For example, in one bug I fixed, a write address was mistakenly being used for a read access to the tag-array of

LLC model. In a real cache, this would return incorrect data but in the model it just manifested as small timing
aberration.

6Chris is also the author of BOOM, the RISC-V Out-of-Order machine you’ll study in lab3.

18

To proceed further, you’ll need to understand the source code of the caches benchmark in
ccbench, and the arguments the program accepts. Once your do, run another simulation with a
modified init script to determine, L1 and L2 block sizes. Provide your plot (you may need to modify
the plotting script).

4.2.2 Harder Questions

Chris did most of the work you in the last part. Now you’ll modify Chris’s code, or write your own
to try to determine some more subtle parameters. We’re interested in the following:

• L1 D Cache Replacement Policy

• L1 I Cache Size

• L1 I Cache Associativity

• L1 TLB Reach

• L2 TLB Reach

• L2 TLB Hit Latency

• DRAM Page Policy (Open or Closed)

• Aggregate (Ranks X Banks) DRAM Page Size

• Number of DRAM Ranks (you can assume there are 8 banks)

• DRAM CAS/RCD/RP latencies (you can safely assume they are the same)

Feel free to glean whatever information you can from the provided AGFIs and runtime config-
urations to write the most effective code possible. Even read the chisel code if necessary. When
you’re ready, try running your code on our three “Mystery Microarchitectures”, provided at the
bottom of config hwdb.ini. These have hardwired memory-model timings and so don’t use a run-
time configuration. And don’t read too much into Chisel compilation that occurs during infrasetup
– we’re using a dummy configuration to build the simulation driver.

4.2.3 Submission

For the three mystery microarchitectures, report the cache dimensions and latencies as indicated by
the provided version of the CCbench cache benchmark. (Include the plots.) Then for each mystery
microarchitecture, provide your best estimate for at least 5 (half) of the parameters – they don’t
have to be the same ones for each uarch7. For each of those parameters explain, referring to your
code as necessary, how you measured it. If you think you cannot accurately guess 5 parameters,
still provide your code and explain what you tried. A higher grade will be awarded to a measured
negative result, over an ill-justified guess (that may be correct). If you have data or plots to show
your code works on the known instances, provide it in your justification.

7Hint: some parameters will be more inferable on particular configurations

19

5 Feedback

To make FireSim a more effective teaching resource for future CS152 students, we’d really appreciate
your feedback. Please fill out the survey form at https://goo.gl/forms/dMdX64t7hECeBQ0z2.

How many hours did the directed portion take you? How many hours did you spend on the
open-ended portion? What did you learn? What would you change? Feel free to write as little or
as much as you want.

6 Acknowledgments

We’d thank Amazon for their credit donation for this lab report. We’d also like to thank Donggyu
Kim, who wrote the first iteration of an EC2 F1 based lab2 for CS152 in Spring 2018. This lab
was inspired by the previous set of CS 152 labs written by Henry Cook, Yunsup Lee and Andrew
Waterman, which targeted functional simulators such as Simics and Spike.

References

[1] S. Beamer, K. Asanović, and D. A. Patterson, “The GAP benchmark suite,” CoRR,
vol. abs/1508.03619, 2015.

[2] S. Karandikar et al., “Firesim: Fpga-accelerated cycle-exact scale-out system simulation in
the public cloud,” in Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA ’18, (Piscataway, NJ, USA), pp. 29–42, IEEE Press, 2018.

[3] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt,
J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg,
H. Vo, and A. Waterman, “The Rocket Chip Generator,” Tech. Rep. UCB/EECS-2016-17,
EECS Department, University of California, Berkeley, apr 2016.

[4] D. Biancolin, S. Karandikar, D. Kim, J. Koenig, A. Waterman, J. Bachrach, and K. Asanović,
“Fased: Fpga-accelerated simulation and evaluation of dram,” in The 2019 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA’19), FPGA ’19, (New York,
NY, USA), ACM, 2019.

[5] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual Volume II: Privileged
Architecture Version 1.10,” May 2017.

[6] S. Wilton and N. Jouppi, “CACTI: an enhanced cache access and cycle time model,” IEEE
Journal of Solid-State Circuits, vol. 31, pp. 677–688, may 1996.

[7] C. Celio, “The ccbench micro-benchmark collection (https://github.com/ucb-
bar/ccbench/wiki),” 2010.

20

