
CS152 Laboratory Exercise 5, Version 1.1

Professor: Krste Asanović
TA: Albert Magyar

Department of Electrical Engineering & Computer Science
University of California, Berkeley

April 22, 2019

1 Introduction and goals

The goal of this laboratory assignment is to allow you to explore a dual-core, shared memory envi-
ronment using the Chisel simulation environment. You will be provided a complete implementation
of a dual-core Rocket processor supporing the RV64G ISA. You will write C code targeting Rocket
to gain a better understanding of how data-level parallel (DLP) code maps to multi-core processors
and to practice optimizing code for different cache coherence protocols.

The lab has two sections: a directed portion and an open-ended portion. Everyone will do
the directed portion the same way, and grades will be assigned based on correctness and appro-
priate formatting of the report. The open-ended portion will allow you to pursue more creative
investigations, and your grade will be based on the effort made to complete the task. For this lab,
there is only one open-ended assignment, in which you will write and optimize a multi-threaded
implementation of matrix-matrix multiply for two different cache coherence protocols.

You are encouraged to discuss problem-solving approaches with other students, but each student
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, you may work individually or in groups of two or three. Any
open-ended lab assignment completed as a group should be written up and handed in separately.
You are free to take part in different groups for different lab assignments.

1

2 Background

2.1 The Dual-Core Rocket Processor

Rocket will be returning from lab 2, but this time, there are two Rocket cores. Each core has its
own private L1 instruction and data caches. The data caches are kept coherent with one another.

Rocket is an RV64G, 6-stage, fully bypassed in-order core. It has full supervisor support (in-
cluding virtual memory). It also supports sub-word memory accesses and floating point. In short,
Rocket supports the entire 64-bit RISC-V ISA; however, no OS will be used in this lab, so code will
still run “bare metal” as in previous labs. Both the user-level ISA manual and the supervisor-level
ISA manual can be found on the CS 152 course website, under the handouts section.

F D X M C

FD FX
1

FX
2

FX
3 FW

P Integer Pipeline

Floating-Point Pipeline

Generate Next PC

Fetch Instruction

Decode, Operand Fetch, Issue

Execute Integer ALU

Data Cache

Commit

FP Decode, Operand

Fetch, Issue

FP Execute Stages

FP Register W
rite

Commit Point

Figure 1: The Rocket control processor pipeline.

2

2.2 The Memory System

In this lab, you are provided a dual-core processor that utilizes a snoopy cache coherence protocol.
Figure 2 shows the high-level schematic of this system.

On-Chip

Main Memory

Rocket
Core

Rocket
Core

I-cache D-cache I-cache D-cache

Bus

Figure 2: The dual-core Rocket system. A logical bus connects the caches and main memory to one another.
In practice, the bus is implemented as a cross-bar with a coherence hub that arbitrates access to the “bus,”
initiates coherence “probe” traffic across the bus, and handles the cache coherence protocol.

Each Rocket core has its own private L1 instruction and write-back data caches. An off-chip
memory provides the last level in the memory hierarchy. Both cores are connected via a bus to
main memory. Only one agent may talk on the bus at a time.

Conceptually, Cache coherence is maintained by having caches broadcast their intentions across
the bus, and to “snoop”, or listen in on, the actions of the other caches. Consult “Lecture 18:
Cache Coherence” for more information on snoopy caches.

2.3 The Lab 5 Multi-threaded Programming Environment

In most multi-threaded programming systems, one thread begins execution at main(), who must
then call some sort of spawn() or thread create() function to create more threads with help from
the OS.

In contrast with a typical multi-threaded environment, we will not be using an operating system
in this lab. Instead, ALL thread begins execution at a function called thread entry() (there is no
main() function in this lab). Each thread is provided a coreid (its unique core id number, either
0 or 1), and ncores (number of cores, which will always be 2 for this lab).

You will need to be careful where you allocate memory in your code. As there is no OS, you
cannot use malloc to dynamically allocate more memory. By default, your code will allocate space
on the stack, however each thread is provided only a very small amount of stack space. You will
want to use the static keyword to allocate memory statically in the binary, where it is visible to
both threads. There is also the __thread modifier, which denotes a variable that should be located

3

in “thread-local storage” memory. Each thread is provided a very small amount of “thread-local
storage,” where variables visible only to the thread can be located.

2.4 Memory Fences & Other Synchronization Primitives

A barrier() function is provided to synchronize both threads. Once a thread hits the barrier()

function, it stalls until all threads in the system have hit the barrier(). Implicit in the barrier is
a memory fence. The barrier() function should probably be enough to implement any algorithms
necessary in this lab.

For more information on the RISC-V memory model, consult Section 2.7 of the user-level ISA
manual in the resources section of the CS 152 website. The RISC-V FENCE instruction can be exe-
cuted by calling __sync_synchronize() gcc built-in function (i.e., saving you the hassle of inlining
assembly). The gcc compiler provides more built-in functions, such as __sync_fetch_and_add().

The FENCE instruction performs as follows: it is sent to the L1 data cache. If the cache is not
busy, the FENCE instruction returns immediately and the pipeline continues executing. If the cache
is busy servicing outstanding memory requests (i.e., cache misses), the FENCE stalls the processor
pipeline until the cache is no longer servicing any outstanding memory requests. In this manner,
the FENCE instruction ensures that any memory operations before the fence has completed before
any memory operations after the fence has started.

2.5 WARNINGS and Pitfalls

• The stack space provided to each thread is only 8KB. There is no virtual memory protecting
your stack, so there is no warning if you overrun your stack (try to allocate arrays and other
large structures statically).

• The thread-local storage is also very small, and also has no warning if you overrun it. Also,
no matter what your code says, all memory is initialized to zero in thread-local storage.

• You may use printf to debug your code, however, only thread 0 may execute it. Also, the
printf provided with this lab does not support outputting floating point numbers; you will
have to cast them to integers first. However, you will note that the auto-generated input
vectors are actually using whole numbers.

2.6 Graded Items

You will turn in a hard copy of your results to the professor or TA. Please label each section of the
results clearly. The following items need to be turned in for evaluation:

1. Problem 3.3: Vvadd performance statistics and answers

2. Problem 3.5: Vvadd-Optimized code, performance statistics and answers

3. Problem 4: Matmul code, statistics, and answers

4

The end-goal of this lab is to fill out Table 1. Some of the values have been filled in for you.
Each problem will guide you through the steps to accomplish this task. You will also submit your
vvadd and matmul implementations via Gradescope. Submission instructions will be posted to
Piazza.

Table 1: Performance of the Lab 5 benchmarks, measured by total cycles and cycles per iteration. Single-
threaded performance is compared against dual thread implementations running on MI and MSI cache
coherence protocols. For the purposes of this table, single-threaded performance is measured using the naive
code on the single-core configuration (i.e. no CONFIG=...)

vvadd vvadd (opt) matmul

one thread 36.7k cycles N/A
36.7 cycles/iter

two threads (MI)

two threads (MSI)

3 Directed Portion

3.1 General Methodology

This lab will focus on writing multi-threaded C code. This will be done in two steps: step 1) build
the Verilog cycle-accurate emulator of the dual-core processor (if the cache coherence needs to be
changed), and Step 2) verify the correctness and measure the performance of your code on the
cycle-accurate emulator.

3.2 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server (icluster{6,7,8,9}.eecs), which
is where you will use Chisel and the RISC-V tool-chain.

First, clone the lab materials:

inst$ git clone ~cs152/sp19/lab5.git

inst$ cd lab5

inst$./init-submodules.sh

inst$ export LAB5ROOT=$PWD

We will refer to ~/lab5 as ${LAB5ROOT} in the rest of the handout to denote the location of
the Lab 5 directory. Some of the directory structure is shown below:

5

• ${LAB5ROOT}/

– test/riscv-bmarks Source code for benchmarks.

∗ common C code for common infrastructure.

∗ vvadd C code for the vector-vector add benchmark.

∗ matmul C code for the matrix multiply benchmark.

– verisim/ Verilator simulation tools and output files.

– csrc/ Verilator test bench C++ source code.

– vsrc/ Verilator test bench Verilog source code.

– rocket-chip Rocket-Chip SoC generator.

∗ chisel/ The Chisel source code.

∗ rocket/ The Rocket processor.

∗ hardfloat/ The floating point unit source code.

– src/ Top-level source code.

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:1

inst$ source ~cs152/sp19/cs152.lab5.bashrc

To compile the cycle-accurate dual-core Rocket Verilog simulator, execute the following com-
mands:

inst$ cd ${LAB5ROOT}/verisim

inst$ make clean; make

For this lab, we will play with the benchmarks vvadd, and matmul. To compile these bench-
marks, and execute the binary on the ISA simulator, run the following commands:

inst$ cd ${LAB5ROOT}/test/riscv-bmarks

inst$ make clean; make; make run

Now, we run the compiled benchmarks on the C++ emulator:

inst$ cd ${LAB5ROOT}/verisim

inst$ make run-benchmarks

This tests the benchmarks for correctness and outputs the performance metrics running on the
emulator. The naive versions of vvadd and matmul benchmarks should PASS, but the optimized
versions should FAIL, because you have not written the code for them yet! It should take about
one to two minutes to run both vvadd and matmul on the emulator.

1Or better yet, add this command to your bash profile.

6

3.3 Measuring the Performance of Vector-Vector Add (vvadd)

First, to acclimate ourselves to the Lab 5 infrastructure, we will gather the results of a poorly
written implementation of vvadd.

Navigate to the vvadd directory, found in ${LAB5ROOT}/test/riscv-bmarks/. In the vvadd

directory, there are a few files of interest. First, the dataset.h file holds a static copy of the input
vectors and results vector. 2 Second, vvadd.c holds the code for the benchmark, which includes
initializing the state of the program, calling the vvadd function itself, and verifying the correct
results of the function.

A very poor implementation of vvadd can be found in the function vvadd(). Run the vvadd

benchmark and gather the performance results of this unoptimized implementation on a dual-core
CPU with MSI coherence policy:

inst$ cd ${LAB5ROOT}/verisim

inst$ make CONFIG=Lab5MSIConfig run-benchmarks

make will run both vvadd and matmul benchmarks on the emulator when changes are detected.
The CONFIG= option tells the generator to use the configuration with two cores and MSI coherence.

You should get something similar to the following output, which corresponds to vvadd:

vvadd(...); barrier(nc): 37481 cycles, 37.4 cycles/iter, 8.2 CPI

This is the output from the stats() macro, which times a section of code and outputs the
resulting performance statistics. The vvadd() function is a non-optimal implementation of a multi-
threaded vvadd function. You should also see performance statistics for a vvadd opt() function,
which will be followed by a FAILED message. This is because you have not implemented the
optimized vvadd opt() function yet!

For now, ignore the matmul statistics. Record the non-optimal vvadd() function results.

3.4 Recording non-optimal results

Delete the .riscv.out files generated by run-benchmarks, then run the benchmarks again, but using
the MIDualCoreConfg. This will take about five minutes to build and about two minutes to run
the benchmarks.

inst$ cd ${LAB5ROOT}/verisim

rm output/*.riscv.out

make CONFIG=Lab5MIConfig run-benchmarks

2You can generate your own input arrays that are a smaller size for rapid testing. See vvadd gendata.pl for
details.

7

Record and report the results of vvadd() using the MI protocol. Taking into account that the code
is written for a dual-core, cache-coherent system, analyze the naive implementation and describe
why it is sub-optimal.

3.5 Optimize VVADD

Now that you know how to run benchmarks, record results, and change the cache coherence protocol,
you can now optimize vvadd for the dual-core Rocket processor. You should write your code in the
provided vvadd opt function, found in ${LAB5ROOT}/test/riscv-bmarks/ vvadd/vvadd.c.

Collect results of your vvadd implementation for both the MI and MSI protocols. What did you
do differently to get better performance over the provided vvadd function? You should be able to
reduce the number of cycles per iteration to about 60% of the naive implementation under MSI and
to less than half of the naive case under MI. Since Matrix Multiply has the potential for added data
reuse over the naive implementation, potential performance benefits are much higher.

VVADD Hints

You can now use printf to test your code, however it can only be executed from core 0. The
current vvadd code prints the contents of results data and verify data if there is an error in
vvadd opt. You can compare these to each other to figure out what went wrong. If you want to
see what each core is doing cycle by cycle, look at the *.out log file in the emulator directory.3

You may also want to go into the ${LAB5ROOT}/Makefrag and remove matmul.riscv from the
bmarks variable. This will allow you to only run vvadd every time you call make run, which will
speed up your development time.

4 Open-Ended Portion: Optimizing Multi-Threaded Matrix Mul-
tiply

For this problem, you will implement a multi-threaded implementation of matrix-matrix multiply.
A naive implementation can be found in ${LAB5ROOT}/test/ riscv-bmarks/matmul/matmul.c.
Feel free to comment it out to save yourself simulation time. You will fill in your own in the provided
functions matmul_opt(). You may add additional helper functions, so long as any additional code
you add is within the stats() function.

Once your code passes the correctness test, do your best to optimize matmul. Your results from
the MI and MSI versions will be averaged together. Go crazy!

Collect results for your matmul implementation for both the MI and MSI protocols. What did
you do differently to get better performance over the naive matmul implementation?

3Core 0 output is prefixed with C0, and core 1 data is prefixed with C1. You can parse stderr by using 2>

output.txt to pipe stderr to a file.

8

Matrix Multiply Hints

A number of strategies can be used to optimize your code for this problem. First, the problem size
is for square matrices 32 elements on a side, with a total memory footprint of 12 KB (the L1 data
cache is only 4 KB, 4-way set-associative). Common techniques that generally work well are loop
unrolling, lifting loads out of inner loops and scheduling them earlier, blocking the code to utilize
the full register file, transposing matrices to achieve unit-stride accesses to make full use of the L1
cache lines, and loop interchange.

You will also want to minimize sharing between cores; in particular, you will want to have each
core responsible for writing its own pieces of the arrays (you do not want false sharing to make
lines ping-pong between caches). Under the MI coherence protocol, it is also useful to avoid having
both cores access the same portions of the input arrays at any given time, as there is no “S” state
to accommodate shared lines.

5 Submitting Code

You will submit your vvadd.c and matmul.c files as part of the closed-ended and open-ended
Gradescope assignments, respectively. Please do not modify any other files from the lab code for
either portion. Instructions for submitting code will be posted to Piazza.

6 The Third Portion: Feedback

Please include any feedback you may have as part of your lab report.

7 Acknowledgments

This lab was made possible through the hard work of Andrew Waterman and Henry Cook (among
others) in developing the Rocket processor, memory system, cache coherence protocols, and multi-
threading software environment. This lab was originally developed for CS152 at UC Berkeley by
Christopher Celio.

9

